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CANONICAL METRIC ON THE DOMAIN OF
DISCONTINUITY OF A KLEINIAN GROUP

Hiroyasu IZEKI & Shin NAYATANI

Introduction

A Kleinian group is a discrete subgroup of the conformai automorphism group of
the round sphère. lts domain of discontinuity is by définition the largest open subset of
the sphère on which the group acts properly discontinuously. The quotient of the do-
main by the group inherits the flat conformai structure of the sphère. In [17] the second
author introduced a canonical Riemannian metric on such a manifold which is compat-
ible with the conformai structure (see §2). He observed that the curvature of this metric
well reflects the Hausdorff dimension of the limit set of the Kleinian group. This recovers
R. Schoen and S.-T. Yau's earlier result [22] on the relation between the Yamabe confor-
mai invariant of the quotient manifold and the Hausdorff dimension of the limit set. Our
result roughly states that the smaller the dimension of the limit set, the stronger the posi-
tivity of curvature. Via the classical Bochner technique, this leads to a vanishing theorem
for the cohomology of the quotient manifold. The first author [11] then used this vanish-
ing result to generalize R. Bowen's theorem [8] on the Hausdorff dimension of the limit
set of a quasi-Fuchsian group to higher dimensions (see §3, §5).

This article surveys various aspects of the canonical metric, and as such it is partly
expository. It, however, also contains new results which we have obtained after the writ-

], [18].

This paper is organized as follows. In §1 we review basic définitions and facts about
Kleinian groups and Patterson-Sullivan measures. In §2 we give an interprétation of the
canonical metric from the viewpoint of hyperbolic geometry. We also discuss the nor-
malization of metric, as well as the behavior of the metric as the Kleinian group is con-
tinuously deformed. In §3 we study the total scalar curvature (precisely, the intégral of
the (dimension)/2-th power of the absolute value of scalar curvature) of the canonical
metric when the Kleinian group is a quasi-Fuchsian group, and prove that this invariant
has a sharp lower bound, which is attained by the hyperbolic metric (= the canonical

Classification math.: 53C20,30F40,53A30.



10 H. IZEK3 & S. NAYATANI

metric associated with a cocompact Fuchsian group). In §4 we give a vanishing theorem
for the cohomology group and the space of I2-harmonic forms of a convex-cocompact
hyperbolic manifold. In §5 we generalize the vanishing theorem in [17] to an arbitrary
flat Hubert space bundle, and give an application. In §6 we construct distinguished met-
rics on certain quasi-balls, following the idea which we used to construct the canonical
metric.

1. Preliminaries

Let {Bn+l, h) dénote the Poincaré bail model of hyperbolic (n + l)-space, where
Bn+l = {x G !R"+1 | |JC| < 1} and h is the Poincaré hyperbolic metric

î-i

Let Sn = {x e Rn+l \ \x\ = 1} and let g0 be the standard induced metric on S". As is
well-known, each isometry of (Bn+1, h) extends to a diffeomorphism of Bn+l (= Bn+l u
S"), and, restricted to S", gives a conformai automorphism of (S", go). In this way, the
isometry group of (Bn+l, h) may be identified with the conformai automorphism group
of (S", go), and we dénote both of these groups by the common notation Möb( n).

Let F be a Kleinian group, that is, a discrete subgroup of Möb(n). For the sake of
simplicity, we assume Fis torsion-free throughout this paper. lts limit set A(F) is defined
as the set of accumulation points in Bn+l of F-orbit of any point in Bn+1. Since F acts
properly discontinuously on Bn+l, A(F) lies in Sn. Let d(Y) dénote the Hausdorff dimen-
sion of A(D- The complement fi(D = Sn \ A(F) is called the domain of discontinuity
of F, which is possibly disconnected. F acts on Bn+l u Cl(T) properly discontinuously,
and freely since Fis torsion-free. Hence the quotient Y = [Bn+l u Q(F)]/Fis a smooth
manifold-with-boundary. Its boundary X — Q(T) /Finherits the flat conformai structure
ofS".

DÉFINITION. — We say that a Kleinian group Fis convex-cocompact if the quotient
C(A(D)/Fis compact, where C(A(F)) is the hyperbolic convex hullofA(F) in Bn+l.

It is known that a Kleinian group Fis convex-cocompact if and only if the associated
manifold Y is compact. It is also worth noting that Fis not necessarily convex-cocompact
even though X is compact.

The critical exponent 5(F) of a Kleinian group Fis defined by

where x,y e Bn+l and d is the hyperbolic distance function on Bn+l. Notice that 5(T) is
independent of the particular choice of the points xt y. It is known that 0 < <5(F) ^ n
and if Fis non-elementaryt that is, A(F) contains at least three points, then 5(T) > 0.
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S. J. Patterson [21] and D. Sullivan [23] introduced a distinguished family of mea-
sures supported on the limit set of a Kleinian group. We review Patterson-SuIIivan's con-
struction. For x € B"+1 and s > ö = 6(T)t we define a measure iiXtS on Bn+l by

-sdiQ.yO) Z^f e S *'y öy°'2-, e

yer
where <5yo dénotes the Dirac measure at yO. By the triangte inequality, we have

o-sdW,x)

In particular, nXiS(Bn+l) is bounded independently of s in the range 5 < 5 < ö + 1.
Hence there exists a séquence Sj approaching <5+ such that the measures ^XiS. converge

weakly to a measure fjx on Bn+l. In fact, it can be shown that for any y e Bn+l, ixytS also
converge weakly, whose limit we dénote by fjy.

We summerize the properties of the measures yx for convex-cocompact Tas

PROPOSITION LI. — Suppose thatT is convex-cocompact Then the measures \xx,x G
5"+1, have the followingproperties:

(a) Each nx is supported onA(T).

(b)

where bo(x, •) is the Busemann function ofhyperbolic space with respect to the référence
pointu.

(c)
xeBn+l, y eT.

(d) IJQ coïncides, up to a constant multiple, with the restriction of the ö(Y)'dimensional
Hausdorff measure toA(T). In particular, d(T) = Ö(T).

It is known that the assertions (a), (b), (c) and the equality d(Y) = 5(F) in (d) hold
more generally if Fis non-elementary and geometrically finite. Here we call Fgeometri-
callyfinite if it has a fundamental polyhedron in Bn+l with finitely many faces. A convex-
cocompact group is characterized as a geometrically finite group without parabolic élé-
ments. When Fis not geometrically finite, it may happen that ]T] e-öd(0.y0) < TO

ux will be again a sum of weighted Dirac measures placed on the F-orbit of 0. To avoid
this and obtain a measure supported on A (F), a certain modification is necessary in the
above construction of/ix. With this modification made, the assertions of Proposition 1.1
hold except (d). We do not go into the details of this point and refer the reader to Nicholls1

book [19] or the papers cited above.

DÉFINITION. — The family of measures {^x \ x e Bn+l} is called a Patterson-
Sullivan density (with respect to the référence point 0), and a family of measures with
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the properties (a), (b), (c) of Proposition 1.1 and with po a probability measure is called a
conformai density (with respect to the référence point 0).

It is known that a conformai density (exists and) is unique for geometrically finite r
[24]. Moreover, for geometrically finite T, a family of measures with the properties (b) and
(c) of Proposition 1.1 must satisfy (a); such a measure family turns out to be the unique
conformai density.

We now let x approach a point Ç e Q(D- Since

1 - I r l 2

'* e Bn+1, Ç e S",
2 .

we have

by Proposition 1.1 (b), and hence yx converges to a zero measure as x — £. However, if
we divide \ix by [(1 - |JC|2) /2] , the resulting measures \ix = cp(x, Ç)"5Mo converge to a
positive finite measure ftç = <p(Ç, Ç)~6/Jo as x — Ç, where

<p(x,y) = - i x -

We shall refer to the new family of measures {ftx | x € Bn+l u Q(T)} as a modified
Patterson-Sullivan density.

2. Canonical Metrics

LetTbe atorsion-free discretesubgroupof Möb(n) withô = ô(T) > Ofandletfi(n
dénote the domain of discontinuity of L In [17] we introduced a canonical metric g on
fi(r),givenby

O r \2/ôO r \
f <pU,Ç)-^o(Ç)
A(O /

= [Px{A(D)]2/â (go)x,
where i*o and px are the measures as in theprevious section. The metric g is T-invariant.
In fact, for any y G T

A(D

= f
f̂
A(D
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where jY = exp(-foo(y"1O, •)). Since y*g0 = jy go, weget y*g = g. Hence g projects
to a metric on the quotient X = Q(T) /T, compatible with the conformai structure. We
dénote this metric on X by the same symbol g. Recently J. Maubon [16] proved that
for geometrically finite T, the metric g is complete if and only if T contains no parabolic
éléments of rank less than 5.

Since the argument in [17] to deduce the T-invariance of g is valid on B""1"1 u£ï(D. g
naturally extends to a metric on Y = [Bn+l u Q(T) ] /r, which we continue to dénote by g.
By using the hyperbolic metric, this metric may be rewritten on Bn+l as

Ü
r

A

= [Vx(A(T))]2/ô hxt

Ü
A(O

It is worth mentioning that, when ris convex-cocompact, (Y,g) gives a natural con-
formai compactification of the hyperbolic manifold (Bn+l, h)/T. It should also be men-
tioned, however, that this metric on Y is not really a new product. Indeed, if we identify
Bn+l with a hémisphère in Sn+l and extend the action of Tto that on Sn+l in the standard
way, the metric is nothing but the restriction of the canonical metric of Qw+1 (Y) fT, where
Q"+1 (T) is the domain of discontinuity of Tviewed as acting on

Since g is conformally flat, its curvature is completely determined by the Ricci ten-
sor Ric. To write down the formula for Rie, we introducé a symmetrie bilinear form Bt

defined by

Bx = I dbo(xg) ® dboixft dvx(%)

lvxŒ), x e B"+i,

where v^ = vx/\\i*x\\ with || • || denoting the total mass. B is nonnegative by Schwarz'
inequality, and

MY)

The Ricci tensor and scalar curvature of the canonical metric g (on Bn+l) are given by

Ric = -(H - 1)(<5 + 1)5 + (n - 1 - <5) ( tr g B) g,

S = n(n-l ~2ö)tigB

respectively. Letting x e Bn+l approach a point of fi(O and restricting to the tangent
space of the sphère, we recover the formula for the Ricci tensor of g (on Q(T)) given in
[17]:

Ric = - ( n - 2)(ö + 1M f (n - 2 - 5) (trg>l) g,

S = (n - l)(n - 2 - 26) t r g A , (2.1)
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where

Ax = (<p-2dq>®dcp) dvx{Q

- f (q>-ldq>)( dvx(l) * f {<P~l

JA(D U I Ç ' JMT)

Note that since vx = jjx /1| jjx ||, it is defined for x G Q(T) also.

The above construction of the canonical metric actually dépends on the choice of
référence point of hyperbolic space, as which we have used the center O of Bn+l so far.
Assuming that the uniqueness of conformai density (with respect to a fîxed référence
point) holds for T, we now vary the référence point; for each a e Bn+1, we have the
metric

gx
a)=Vx

a)(A(T))2/ôhx, xeBn+l,

where {fJx
a) \ x e Bn+l} is the unique conformai density with the référence point a.

Then we have

Indeed, this identity is an immédiate conséquence of

^ ) = (Aii0)(A(O))"1Aif, (2.2)

which we now prove. Using

we compute

= -obaU.Ç) (0)

By the uniqueness of conformai density, we must have vx
0) = constü*.g). In particular,

^ 0 ) ^ , and hence const = ̂ 0 )(A(D). Thisproves (2.2).

We now set

T? / —\ . « ( 0 ) / A / T \ \ 1 >»~O bn\Q,t) J . , (0 ) /"c\ _ / - nfl+1

r(a)=iJa (A(I)) = ƒ e u «A'o vç)i fl G/> ,

so that g(fl) = F(a)~2 /5g (0 ) . Note that F is T-invariant and tends to zero as a approaches
a point of fi(D. Hence F can be viewed as a continuous function on the manifold-with-
boundary Y = [Bn+1 u Q(D]/T which is positive in the interior and vanishes on the
boundary. We now suppose that Tis convex-cocompact, so that Y is compact. Then F
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attains its maximum at some point a e Bw+1, and g{a) is minimal among all its compan-
ion metrics. We shall refer to g{a) as the minimal canonical metric. Note that F does not
always attain maximum without the assumption of convex-cocompactness; consider Y
with single limit point, for example. It is also worth mentioning that since

dFa = -ô [

a point a e Bn+l where F attains its maximum (if exists) is the barycenter of the mea-
sure /L^°\ which coinsides with that of fj{

a
a); bar (^ 0 ) ) = bar(A^fl)) = a (see §3 for the

définition of barycenter).

For a e Möb(w), let r ' = «ra" 1 (the "push-forward" of Tby a) and label the corre-
sponding objects by '. Then we have

aV;(0)=^0)- (2.3)

Indeed, for 5 > <5

a*u' (0) = l V ^ -$dix.aya-l0)s
XS T e-sd(Qaya-*0) 2L,e °y«"1 0

Letting s — <5, we obtain (2.3).

By (2.3)

since A(I") = a(A(D). It follows that

This formula means that the conjugation of r has the same effect on the metric as the
change of référence point. Clearly, a pulls back the minimal canonical metric for T (if
exists) to that for r ' .

Next we show that the canonical metrics vary continuously on the set of convex-
cocompact Kleinian groups. Here we only consider the behaviour of g(0), which we drop
the superscript and dénote simply by g. It is not, however, so difficult to see that g(ö)

for fixed a also varies continuously along déformations of convex-cocompact Kleinian
groups.

Let Hom(G,Möb(n)) be the set of représentations of a torsion-free group G into
Möb(n). The topology on this set is given by the pointwise convergence of représenta-
tions as maps into Möb(n). If G is finitely generated, this topology is equivalent to that
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given by the uniform convergence of représentations on a finite set of generators. We de-
note by C(G, Möb(w)) the set of faithful représentations whose images are discrete and
convex-cocompact.

THEOREM 2.1. — On the set C( G, Möb ( n) ) , the canonical metrics vary continuously.
More precisely speaking, ifpj — p inC(G,Möb(n)), then there is a séquence of diffeom-
rphismsipj : (Q(T)/Tfg) — {n(Tj)/Tjfgj) such thattp^gj - g in C°°-topology, where
Tj - Pj(G),T= p(G),gj and g are the canonical metrics for Tj andï respectively.

The basic ingrédient of the proof is the following lemma.

LEMMA 2.2. — Assume G is torsion-free.

(a) C(G, Möb(n)) is open inHom(G,M6b(n)).

(b) The critica! exponent regardedas afunction onC(G, Möb(n)) is continuous.

(c) Themapp — iix(p(G)) for flxed x is continuous on C(G,Möb(«)), where iix{p(G))
dénotes the measureyx forp(G).

The first and the second parts have been shown in [7]. A different proof in terms
of conformai geometry on Q(I) can be found in [12]. We give the proof of the third part
hère.

Proof of (c). First recall that, for any Kleinian group T, the Patterson-Sullivan measure
^o associated to Tis a probability measure on S". Suppose pk — p in C(G, Möb(«)).
We dénote p(G) by Y. And let ji* and 0* be the Patterson-Sullivan measure at x and
the critical exponent ofp * (G) respectively. By (b), 5* — 5 = <5(D. Since the space
of probability measures on a compact metric space is compact with respect to weak-*
topology, there is a subsequence of {/JQ }» which we dénote by {̂ o}» and the limit ô of
the subsequence. Let ƒ be a continuous function on S". Then, by Proposition 1.1 (b), we
have

/ / (Ç)d/ i i (g )= / f(l)e
Jsn Jsn

By (b) and the continuity of bo(x, Ç), the function ƒ (Ç) exp(-<5y bo(x, Ç)) converges to
ƒ (Ç) exp(-<5 bo(x, Ç)) uniformly on Sn, namely

| f ƒ ^ 0 as j - oo. (2.4)

On the other hand,

sn Jsn

sn

1/ nDe-^Wdnjd)- f
I Jsn Jsn
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and the uniform convergence (2.4) implies that the second term in the right-hand side
is less than s j since /j<{'s are probability measures. Together with jij — ̂ o» w e see IJX —
Vx = e~s W*®fjQ. Therefore {Vx}xeHn+l satisfies Proposition 1.1 (b). For any h e G,
Yj = Pj(h) — p(h) = y uniformly on S". Then it is easy to see y*ni — y*i*xbyan
argument similar to the above. On the other hand, again by Proposition 1.1 (b), for any
continuous function ƒ on S"

[ jc [
sn yi Jsn

Since the Busemann function bo(x, Ç) is Lipschitz continuous with respect to x for fixed
Ç» bo(y~jlx> Ç) — bo(y~lx, Ç) uniformly on Sn. This implies the uniform convergence

for any continuous function ƒ on S". Combining with Mo ^ A*o» we see

Jsn Jsn

for any continuous function ƒ by the same argument as above, which means VJ-ix —

jLiy-î .. Thus we have y*yx
 = Vy-ix by the uniqueness of the limit, which is equivalent

to say y*/Jx = Hyx- Therefore \IJX} satisfies Proposition 1.1 (c). By the uniqueness of
the conformai density for convex-cocompact Kleinian groups (cf. §1), {l*tx}XeHn+i must
be the Patterson-Sullivan density of T. Note that our proof shows any convergent sub-
sequence of {^} has ô as its limit. Suppose our original séquence {JJQ} itself does not
converge to ^o- Then there is a subsequence of {JJ*} which does not converge to ^o- On
the other hand. because of the compactness of the set of probability measures on Sw,
this subsequence must contain a convergent subsequence whose limit is not ^o- This
contradicts what we have seen above. Thus {^} itself must converge to ^. By the trans-
formation law (b) in Proposition 1.1 and (b), the same is true for {ji*} with any fixed JC.
This complètes the proof. •

Proof of Theorem 2.1. As was shown in [12], for large j , there is a quasiconformal
mapping (// j which conjugates p j to p. By the construction of t//7- in the proof of Theorem
1 in [12], it is an equivariant diffeomorphism between fi(D and Cl(Tj) and y j — id
with respect to C°°-topology on each compact subset of Q(T). Also ip j is an equivariant
homeomorphism between A(D andA(r7),andy;y — id uniformly on Sn. We dénote the
critical exponent and the Patterson-Sullivan measure /J0 of Tj byôj and ^J respectively
as in the proof of Lemma 2.2. Then for Ç G Q(D
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where <//;(n'j) = H- Recall that (//y — id uniformly on S", and qjj — id with respect to

C°°-topology on each compact subset of Q(D. This, together with <5y- — <5 and ^ — vo>
implies that gj — g uniformly on each compact subset of fi(D by a slight modification
of the argument in the proof of Lemma 2.2

This is also true for the derivatives of <//*-g/s since these derivatives corne from those
of |Ç - n\~ôJ, ip j and go with respect to Ç. Therefore ty*gj — g with respect to C00-
topology on each compact subset of Q(0. Since Q(D/ris compact and t///s are equiv-
ariant maps, this gives the desired séquence of diffeomorphisms. D

In [12], the first author proved that the Teichmüller space of flat conformai struc-
tures on a manifold satisfying certain conditions can be embedded into the space
C ( TTI ( M ) , M öb ( dim M)). We can compactify the Teichmüller space by compactifying its
image in Hom(TTi (M), Möb(dim M)). Moreover, under certain assumptions, it is possi-
ble to associate a Riemannian metric to each point of the boundary. These metrics are
constructed in the same manner as our canonical metrics, and the metrics vary contin-
uously up to the boundary. This will be useful for investigating the Teichmüller space of
flat conformai structures and topology of conformally flat manifolds.

3. Quasi-Fuchsian Groups

Let Mobo(n) dénote the identity component of Möb(n). Let Ib be a convex-
cocompact discrete subgroup of Möbo(n) whose limit set is a round p-sphere Sp for
some p < n. Then B**1 = C(SP) is invariant under T, and the quotient B**1 /ris com-
pact. In other words, Fo is an extension of a cocompact lattice in Möb ( p). We assume this
lattice lies in Möbo(p). Let p : Ib — Möbo(n) be a faithful représentation whose image
F = p(r0) is discrete and convex-cocompact. In this paper, we call such a représentation
a quasi-Fuchsian représentation and its image a quasi-Fuchsian group. By the resuit of
R.Bowen[8],H.Izeki[ll],M.Bourdon[6]andC.-B.Yue[25],wehaved(r) ^ p(= d(r0))
with the equality sign holding if and only if A(D is a round p-sphere. If p = n - 1 ^ 2,
this last condition implies, by the Mostow rigidity, that Tis conjugate to TQ in Möb(n).

More recently, G. Besson, G. Courtois and S. Gallot [4] have given a new proof of this
resuit by studying the Jacobian of two maps defined in terms of the Patterson-Sullivan
measures and the barycenter map. To describe one of these maps, we first recall [10] that
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for a measure y on Sn without atom, its barycenter, denoted by bar(ju), is defined as the
unique critical point of the function

= f
Js
f o Z u & x e B n + l .
s»

The barycenter map bar has the equivariance property

bar(y*ji) = y(bar(*i))f y G Möb(n). (3.1)

We also recall the existence of a canonical homeomorphism ƒ : A(D — A(ro) = Sp

satisfying

ƒ (yS) = P~!(y) ƒ <5)> y e r, ç G A(D. (3.2)

We then define the map F : Bn+l - B ^ 1 by

Jt€BB+1 ,

where j / x are the Patterson-Sullivan measures and ƒ* represents the push-forward of
measures by f. By Proposition 1.1 (c), (3.1) and (3.2), F satisfies

F(yx) = p-l(y)F(x), ye r , xe Bn+l.

It is proved, moreover, that F is a smooth map.

We now observe that F naturally extends to a map defined on Bn+l u £2(1). Indeed,
the map F remains unchanged if we use the modified Patterson-Sullivan measures px

to define it instead of yXt and fix are defined for x G Q(T) also. One can show that the
extended map F : Bn+l u Q(T) - B**1 is also smooth. Since both F and the action off
extend smoothly up to fi(D> F satisfies

T(yx) = p'l(y)F{x)t y e r , x G BW+1 U C1(Ï) . (3.3)

We now suppose p = n - 1. Then Q(D consists of two contractible connencted
components, both of which are invariant under the action of E Take one of these con-
nected components and dénote it by £V We shall dénote the restriction of F to ̂ o by
G, and study the Jacobian of the mapping G : Qo — Bn. We may use v* = \xx /11 jjx \ \
instead of px to define G. Since

setting y = G(x), we have

1

•ƒ

dbö{y,f(ï))

< p U '
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Taking covariant derivative in the direction u G TxS
n, substituting v G Tc(X)Bn and

rearranging, we obtain

ƒ VdbOiC{x)if{ï))(dG{u),v)dvx(%)

= ô J ({cp-ldcp){xl) - J (q>-x

x / dbO{G{x)J{ï))(v)2dvx(Z)

If we define linear endomorphisms H and K of Tc(X)Bn by

h(H-,.) = JdbQ{G{x)ifiï))(.)
2dvx(ï),

-, •) = Jh(K-

where h is the hyperbolic metric, the above estimate may be rewritten as

\h{K o dG(u), v)\ ^ ög(Au, u)l/2h(Hv, v)1/2,

where g is the canonical metric on Qo (c O(D)- By elementary linear algebra, we obtain
the estimate

l JacGI < 5rt(detA)1/2(dettf)1/2.

Since

for the Busemann function of hyperbolic space, we have K = I - H, Hence

We now assume n ^ 3. It has been proved by G. Besson et al. [3] that the inequality

(detH)1 /2 ^ (det^/ ) 1 / 2
 n

nl2

det(I-H) ^ det ( / - £ / ) in'l)n

holds for any positive symmetrie matrix H such that tr H = 1. Using this together with
det A ^ (trA/n)n, we finally obtain

IJacGI ^ ( ^ ^ - 1 (tiA)
n

n/2
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By (3.3), G induces a mapping from X - C1Q/T to Bn/To, which we dénote by the
same symbol G. It is clear that G induces an isomorphism between the fundamental
groups of X and Bn/T; in particular, G is a homotopy équivalence. Since deg G = ±1,

f
JBn/To

vh = \ [ c * v h
\JX

Jac G vg

Using (2.1), we obtain the following assertion on the total scalar curvature:

THEOREM 3.1. — Let Ib, T and CIQ be as above, g the canonical metric restricted to
X = fîo/r, and assume n ^ 3. Then wehave

f/ o \"' 2 ^ (n-\\n (25-n + 2\
Jx \ ô / \ n f / {~Sh)

Bn/T0

The constant on the right-hand side is equal to 1 when ô = n - 1, and it is monotone
decreasing from 1 to ( ̂  )n ( ̂  )nl2 in the range n - 1 < 5 < n. On the other hand, it is
known [2] that the hyperbolic metric h is a local minimizer of the functional

in /2
g •

JB*

defined on the space of all Riemannian metrics on Bn/To.

4. Cohomology and 12-Harmonic Forms of Hyperbolic Manifolds

A complete orientable hyperbolic manifold can be written in the form Hm/T, where
Hm is hyperbolic w-space and ris a torsion-free discrete subgroup of Möbo(m - 1), the
group of orientation-preserving isometries of Hm. Throughout this section, we assume
that Fis convex-cocompact, so that the manifold-with-boundary Y = [Bm u Q(l)]/T
is compact. Via a standard embedding Möbo(m - 1) c Möboim + k), unique up to
conjugation, we may regard T as a group of conformai automorphisms of Sm+k. The
conformai compactification of the product manifold Hm/T x Sk is then identified with
& = Qm+k(T)/Tt where Qm+k(T) is the domain of discontinuity of Hn Sm+k. By elemen-
tary algebraic topology, one can show

Hp{®;R) s Hp(Y;WL) ® Hp~k(Y tdY;WL).

Note that the second cohomology group in the right-hand side is isomorphic to the
compactly-supported de Rham cohomology group Hc

p~k(Hm/T; R). On the other hand,
as a conséquence of the vanishing theorem proved in [18], we have:
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(i) If Ö + 1 < p < (m + k) - ö - 1, then /ƒ?(#; R) = 0;

(ii) If <5 is an integer, 5 < <*»+*>-2 and H5+1 (# ; R) * 0, then A(Y) is a round 5-sphere.

We now suppose that p > 5 + 1 . Choosing k = max(2/? - m, 0) so that the as-
sumption of (i) is satisfied, we obtain Hp{â£; R) = 0. This in turn implies HP(Y\ R) =
Hf>-k(Y,dY;R) = 0 as well as Hm-f>(Y,dY; R) = Hm"^k{Y;tL) = 0 by the Poincaré
duality. On the other hand, it follows from (ii) that if 5 is an integer, p = ö + 1 and ei-
ther HP(Y; R) or Hp~k(Yt dY; R) (with k as above) do not vanish, then A(D is a round
<5-sphere. We have proved

THEOREM4.1. — Let Hm/T be a complete orientable hyperbolic manifold with Y
convex-cocompact. If p > <5 + 1, thenHp(Y\R) = Hm~p(YfdY;R) = 0. If 6 + 1 <
p < m/2, we also have that Hm~P(Y;R) = Hp(Y,dY\VL) = 0. Ifô is an interger and
Hs+l(Hm/T;R) * 0(orHm-ö-l(Hm/T;R) *0ifô< m/2- l), then A(I) is a round
ö-sphère.

Let ^q{Hm/Y\R) be the space of I2-harmonic ^-forms on Hm/L A resuit of
R. Mazzeo and R. Phillips [151 states that if Tis convex-cocompact and q < m/2,

/T;m s Hq(Y,dY;R).

On the other hand, the star operator induces an isomorphism

&«{HmIT\ R) = 3#m-q{HmIY; R),

which corresponds to the Poincaré duality

Hq(Y,dY;R) = Hm"q(Y;R).

As an immediante conséquence of Theorem 4.1, we obtain

COROLLARY4.2. — Let Hm/Y be as in Theorem 4.1. If p > <5+l and p * m/2,
tf>P(Hm/Y\ R) = 3#m-P{Hm/Y\ R)=0. If5 isan interger, ö*m/2-l and<&s+l(Hm/Y; R)*0,
t hen A (Y) is a round Ö-sphère.

5. Cohomology of Flat Bundies and lts Application

In this section, we assume that T is not only torsion-free but orientation preserv-
ing; namely, Fis a torsion-free discrete subgroup of the identity component Möbo(n) of
Möb( n). However, aft er an appropriate modification, most of what we will show in this
section is valid without this assumption.

Let cd G (resp. hd G) be the cohomological (resp. homological) dimension of agroup
G, namely,

cdG = max{Jt \Hk{G\SP) * 0forsome2G-module^},

hdG = max{*:| Hk{G\&) * 0forsomeZG-module^},
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where Hk(G; .9) (resp. Hk{G; &)) is the fc-th cohomology (resp. homology) group of G
with coefficients in SF. If we take a Kleinian group T c Möb(n) as G, H* (r; .9) (resp.
H*(r;^))isisomorphictoH*(y,^)(resp.H*(y;^)),whereyr = [Bn+} uQ(D]/rand
-9 is regarded as a local System on y. If r is convex-cocompact, r is of so-called type
FL, and cdr = hdrholds (see [9, p. 204]). As was shown in [11, Proposition 4.13], the
inequality cdl* - 1 ^ <5(O holds for any convex-cocompact Kleinian group T. We will
examine the equality case of this inequality. A naive conjecture is that convex-cocompact
Kleinian groups satisfying the equality have round sphères as their limit sets. At least
this is true for Tisomorphic (as a group, not as a Kleinian group) to cocompact lattice in
Möb( m - 1 ) as we have mentioned in §3, and m turns out to be cd Tin this case. Another
way to state this is:

THEOREM 5.1. — ([8], [25], [6], [4], [11]) LetYQ c Möb(m - 1) be a cocompact
lattice. Suppose thatp : Ib — Möb(n), n ^ m - 1, is a faithful discrete représentation
and thatT = p(To) is convex-cocompact. Ifô(ï) + 1 = m(= c d r = cdlo), then A(D isa
round <5(D -sphère.

It should be mentioned that in [25], [6], and [4], Möb (AI) in the theorem above has
been replaced by the isometry group of more gênerai negatively curved manifolds.

Using Theorem 5.4 below, which is a generalization of [17, Theorem 5.2] to an arbi-
trary flat Hubert space bundle, we can prove the following extension of Theorem 5.1 and
[11, Theorem 5.2]

THEOREM 5.2. — LetTo c Möb (m) be convex-cocompact with cdlo = m. Suppose
thatp : Io — Möb(n), n ^ m- 1, isa faithful discrete représentation and thatl'= p{To)
is convex-cocompact. Ifô(T) + 1 = m, thenA(T) isa round5(T)-sphère.

Remark. Since a cocompact lattice Io is a subgroup of Möb(cd Ib-1 ) and Möb(cd Ib-
1) c Möb(cdlb),rin Theorem 5.1 satisfiesthe assumptionof Theorem 5.2. IfTsatisfies
the assumption of 11 1, Theorem 5.2], then we can take Titself as Ib in Theorem 5.2. There-
fore Theorem 5.2 includesbothTheorem 5.1 and [11, Theorem 5.2].

The first thing we have to recall is the relation between the cohomology of Fand that
of X - Q(D /F. Note that, through the homomorphism TT\(X) —• TT\{Y) inducedfrom
the inclusion X — Y, the restriction of a local System on F to X gives rise to a local
System on X. Thus ZF-module defines a local System not only on Y but on X.

LEMMA 5.3. — Let Y c Möb(n) be a convex-cocompact Kleinian group and â> a IX-
module.

(a) For p < n - cd T, H^{X\ &) is isomorphic toHHT\ .9).

{b)Forp< n-càïtH
n~P{X\SP) is isomorphic to Hp{I\SP).
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Proof.

(a) Since Y is a compact manifold-with-boundary, by the Poincaré-Lefschetz du-
ality, wehave W ( y , X ; ^ ) s Hn+i-p(Y;&) s Hn+l-p(Y\.9>). Since hdr = cdT,
Hq(Y\.9>) = 0 for q > cdT, hence HP{Y,X)#>) = 0 for p < n + 1 - cdl*. Applying
the cohomology exact séquence for the pair (Y, X)> we obtain the desired resuit.

(b) Since Hn~P(Y;^) s Hn~P(Y\6P) = 0 for « - p > cdr, by cohomology ex-
act séquence for the pair (y ,X) , Hn~HY\^) s Hn-**l(Y,X;&) for n - p > cdr.
By the Poincaré-Lefschetz duality, Hn~^HY,X\&>) s Hp(Y;#>) s Hp(Y,#>). This
proves (b). D

Take a Kleinian group T c Möb(n) and a unitary représentation p of T. We dénote
by Jâp the Hubert space with Taction via p. The group Tacts on Q(Y) x&p diagonally,
and we have a Hubert space bundle Ep over X = £1(1) /F, the quotient of Q(D x ^ , by
the diagonal action. There is a natural metric on the bundle E, and we also have a flat
connection compatible with this metric. We call such a bundle a flat Hubert space bun-
dle. Since the connection is flat, the covariant differentiation D defined for £-valued
p-forms satisfies D2 = 0, and hence we have a cochain complex consists of E-valued
p-forms with coboundary operator D. We dénote by H* (X; E) the cohomology of this
cochain complex.

On the other hand, since J%> is a ZT-module, Jtfp defines a local System on X as we
have explained above. We dénote by the same symbol ûtfp the local System on X defined
from 3âp. Since X is a manifold, the cohomology of this local System 3âp agrées with
Cech cohomology of the locally constant sheaf naturally defined by the local System J*£.
Moreover, by a standard argument (for example, imitate the argument in [5, §8]), we
can prove that this Cech cohomology is isomorphic to H*(X; E). Thus, in particular,
H * (X; 3âp ) is isomorphic to H* (X; E).

As a generalization of the vanishing theorem in [17], we obtain the following van-
ishing resuit for H* (X; E). We will use the second part of this theorem to prove Theo-
rem 5.2.

THEOREM 5.4. — LetY c Möb(n), n ^ 3, be a Kleinian group such thatQ(T) /Y is
compact, and E a flat Hubert space bundle overX = Cl(Y) /Y. Dénote by ö the critical
exponent ofY.

(a) Suppose ö < (n - 2) In. Then, for integers p satisfyingô + 1 < p < n - ô - 1 ,
) = 0 .

{b) Suppose ois an integer, Ö < (n-2)/2tandeitherHô+l(X;E) * 0orHn~8-l(X\ E) *
0 holds. ThenA(T) is a round ô-sphère.

Proof The first thing we have to do is to construct a new cochain complex whose
cohomology is isomorphic to H* (X; E).

Let AP(E) and D be the linear space consisting of smooth p-forms with values in E
and covariant differentiation respectively. By définition, H* (X; E) is the cohomology of
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the cochain complex {(A* (E),D)}. The standard L2-inner product on AP(E) is given by

(«,/?)= f (oc,P)vg, (x,peAp(E),(0^ P< n),
Jx

where <•, •> is the inner product on each fiber coming from the canonical metric g on
Q(D /r and the inner product on Jtf» and vg is the volume form of g. Let us consider
another inner product given by

Dénote by WP(E) the completion of AP(E) with respect to the norm || • \\w defined by
means of this inner product. It is obvious that D : AP(E) — Ap^l(E) is bounded with
respect to the norm || • Uw, and hence D can be uniquely extended to the bounded
operator D : WP(E) — Wp¥l(E). Clearly D2 = 0, and we obtain a cochain com-
plex {(W*(E),D)}. Let us dénote the cohomology of this new cochain complex by
H*(X;W). We are going to sketch a proof of H*(X;E) 2 H*(X;W). Let U be an
open subset of X diffeomorphic to Rn. Then it is not so difficult to see that the Poincaré
Lemma holds for WP(U), where WP{U) is the completion of the space of smooth p-
forms on U with values in E which are bounded with respect to the norm II - Uw- In
other words, the following séquence is exact:

0 — Mp — W°{U) — Wl(U) — W2(U) — • • • ,

where J^p is regarded as the set of constant ̂ -valued functions on U and ( is the natural
inclusion map. Then, by a slight modification of the proof of H*(X; E) = H*(X;J#P),
one can prove H*(X; W) ^ H*(X\&p). (To prove this one needs to assume X is com-
pact.) This impliesH*(X;£) = H*(X;W).

Let us turn to the proof of (a). Not e that Wp ( E ) can be considered as the domain of
the closure of Dregarded as a densely defined operator I^{E) —* L^l(E)> where I^{E)
is the completion of AP(E) with respect to the ordinary L2-norm || • \\L = (•, - ) 1 / 2 . Thus
we may dénote the closure of Dby D. Let us dénote the adjoint of D : L]>(E) —- if*1 (E)
by D*, and the (positive) Laplacian DD* + D*D by A. Since E is flat, writing down the
Weitzenböck formula

(Aa, a) = - /
Jx

we see that the curvature term Mt which is a bilinear form on each fiber, is completely
determined by the curvature of cotangent bundie and essentially the same as that in the
Weitzenböck formula calculated in [17, §5]. Thus, under the assumption of (a),
^ ( a , a) ^ -c(<x, a) at each point for sorne positive constant c as in the proof of [17,
Theorem 5.2] Since

(Aa, a) = (Da, Doc) + (D* a, D* a),

on the kernel of D, we have

(D*(xfD*a) ^ cVol(X,g)(a,a).
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Therefore D* : Ker D — I has the bounded inverse, where I = D* (Ker D) and it must
be closed. Thus so does D = D** : / — KerD. In other words, for any a e KerD,
there is 0 e I such that D(0) = a. Thus HP(X; E) = HP(X; W) = 0.

On the other hand, under the assumption of (b), we have 9l(<x, oc) < 0 as in the
proof of [17, Theorem 5.2]. Now assume Hö+l(X; E) * 0. If ^ ( - , •) for (<5 + l)-forms is
négative definite everywhere, then there must be a positive constant c such that
(D*a,D*a) ^ cVol(*,g)(a,cx)holdsforanya G KerD. This implies Hô+l(X; E) =
Hs+l(X; W) = 0 as we have seen above. A contradiction. Thus ëfti-, •) must have zero
eigenvalue (as an endomorphism on each fiber) at some point. By the équation (20)
of [17], this implies the tensor A defined in [17, §3] (see also §2 of this paper) must have
(n-ö- l)-dimensional zero eigenspace. The same is true if we assume Hn~ô~l(X; E) *
0. By [17, Lemma 3.2 (b)], A (O must be contained in a round (5 + 1)-sphère S. Since
5 + 1 < «, risconvex-cocompactby [11, Lemma 2.2 (2)]. Therefore c d r < 5 + landwe
haverc-5-1 ^ n-cdr . Supposecdr< <5 + l. Then we have 5+1 ^ n-ö-1 < w-cdr
(we are assuming 5 < ( n - 2) /2). Together with our assumption, Lemma 5.3 (a) implies
eitherH5 + 1(r;^) * Oor Hn-ô~l(T;J%>) * 0. On the other hand, we have cd T < 5 + 1 ^
n - ö - 1. A contradiction. Therefore cd T ̂  5 + 1, and hence cd Y = 5 + 1.

Suppose the round (5 + 1)-sphère S above is the minimal round sphère contain-
ing A(O. Then Tleaves this S invariant. By [11, Theorem 5.2], A(I") is a round 5-sphere.
If S is not the minimal round sphère containing A(D, then the minimal one S' has the
dimension strictly smaller than 5 + 1. On the other hand, since 5 = d(T) by convex-
cocompactness, the dimension of S' cannot be strictly smaller than 5. Hence the dimen-
sion of S' is 5. Since Tleaves S' invariant, Tleaves the hyperbolic (5 + l)-plane whose
boundary is S'invariant. Since cd Y = 5 + 1, Tmust act cocompactly on this hyperbolic
(5 + 1 )-plane. Therefore A (F) coincides with S'. This complètes the proof.

Remark 1. Since our bundles in Theorem 5.4 may be infinité dimensional, we can-
not expect that each cohomology class is represented by a harmonie form. Therefore the
ordinary Bochner technique breaks down in our situation. However, as we have seen,
Weitzenböck formula still tells us the vanishing of cohomology. The first author learned
this method from P. Pansu's talk [20].

Remark 2. The important point in Theorem 5.4 is that the second part is valid for
any flat Hubert space bundle. In [17], the proof of the corresponding part of Theorem
5.2 was carried out by a rather standard method using the de Rham décomposition and
the classification of product conformally flat manifolds. Though this method cannot be
applied to our present situation, we have been able to prove the second part for any flat
Hubert space bundle using some remarkable properties of our canonical metric.

Let

cd,^r= max{fc | Hk(Y;ôtfp) * Oforsome^},

hdje?r=max{*:| Hk(Y;ûPp) * OforsomeJ^}.

Clearly cd Y ̂  cd^ Tand hd Y ̂  hd^ Fhold, though it is not clear whether the equality
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holds or not. For a convex-cocompact Kleinian group F, we also have cd F = hd F ^

LEMMA 5.5. — LetTbe a convex-cocompact Kleinian group. Ifeitherö(T) + l = cdr#>T
orö(D + 1 = hdjsf T holds, thenA(Y) is a round 5(1) -sphère.

Proof. Put 5 = ö(T). By extending the action of Fto Sn' for sufficiently large n
through the inclusion Möb(n) —* Möb(n') and replacing n with n if necessarry, we
mayassumeboth5+1 < rc-cdFand5 ^ (n-2) /2 . I f c d ^ F - 5+1, then there is <?*£ such
thatJ/6 + 1(r ; j$) ^ O . B y L e m m a S . S t e ) , ^ 1 ^ ; ^ ) £ HM{X\Jfy) = Hs+l(X;E) * 0,
where E is the flat Hilbert space bundie defined from J%>. Similarly, if h d ^ r = 5 +
l,byLemma5.3(b), there is ̂ ' s u c h that tf5+i(F;^') = Hn'5'l{X\^p) * 0. Thus
there is a flat Hilbert space bundie E' such that Hn~s~1(X) E') * 0. Now apply Theo-
rem5.4(b). D

LEMMA 5.6. — LetTo c MÖb(m) be convex-cocompact with cdTQ = m. Then there
exists a Hilbert space J#p with unitary action q/T0 such thatHm(T0;utfp) * 0. In particular,

Proof. By [11, Proposition4.6], Hm(Fo, 1TO) is isomorphic to the Oth reduced homol-
ogy Ho(Cl(To)> 1) of Q(F0). Note that H0(Q(F0)f 1) is a free abelian group and its basis con-
sists of connected components of Q(Fo). Thus there is a natural Fo-action on Ho(Q(Fo), 1)
which permutes the basis. Therefore HQ(Q(TQ), 1) ® C (or Ho(n(ro), 2) ® IR) admits a Fo-
invariant inner product. Let $e be the completion of H0(fï(F0), 1) ® C with respect to
the norm given by this inner product. We dénote by J ^ this Hilbert space with unitary
Fo-action coming from the action of Fo on /70(Q(r0), 1). Since Hodb, 2) is the kernel of
the augmentation map, it is a F0-invariant subgroup of H0(F0, Z). Thus the natural inclu-
sion turns out to be a F-equivariant monomorphism Hodb, 2) —- Jtfp. By the universal
coefficient theorem (see [9, p. 204]), Hm(T0,<jtfp) * 0. D

Proof of Theorem 5.2. The assumption of Theorem 5.2 and Lemma 5.6 implies
hd,*? F = h d ^ r0 = 5 + 1. Then apply Lemma 5.5 to F. •

6. Metrics on Quasi-Balls

Let Q be a domain in Rn with compact smooth boundary Z. Following the idea
which we used to construct the canonical metric, we define a Riemannian metric ga on
Qby

—̂ [ go, (6.1)

where CÜ „_ i is the volume of the unit ( n -1 ) -sphère, go dénotes the Euclidean metric and
a is the volume element of Z defined with respect to the induced metric. The constant
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W_! is put so that the metric coïncide with the Poincaré metric when fi is the unit
bail. Let y : Rn - H" be a Möbius transformation. Let fi* = y"1 (fi), and let a* be
the volume element of S* = y"1 (Z). By the same computation as was used to show the
r-invariance of the canonical metric (see §2), we obtain

Y*gn = gn*- (6.2)

In particular, gn is invariant under the Möbius automorphism group of fi, Le. the group
of Möbius transformations preserving fi . When y is allowed to map the point at infinity
into Z and thus Z* is noncompact, we may still define gn* by (6.1), and (6.2) continues
to hold in this case.

We now consider special examples of quasi-balls, namely, intersections or unions of
two intersecting round balls. Let B\ and Bz be such balls, and Si and Sz their boundaries,
respectively. We dénote by a the angle, viewed from the interior of B\ n Bz (or B\ u Bz)t

at which S\ and Sz meet. We pick two points p\, pz from S\ n Sz and choose a Möbius
transformation of W* - Rn u {00} such that y(0) = px and y(oo) = p2. Then fi =
y'1 ( B\ n Bz ) (or y'1(B\U Bz)) is a sector bounded by the union Z of two half-hyperplanes
Zi and Z2 which meet with the angle ex. We arrange them so that

Zi = {(x\,...,xn) | xn-i ^ 0,xn = 0}

and

Z2 = {(xi,...,xn) | xn-i = rcosoc,xn = rsinof,r ^ 0}.

Similarities x — rx, r > 0, and translations x — x+ v, v e Rn~2 = {JCW_I = xn = 0}, form
the identity component of the Möbius automorphism group of fi, and its orbits are half-
hyperplanes bounded by Rn~2. Thus the set {xô = (0, . . . f 0, cos 0, sin 0) | 0 < 6 < a}
represents the orbit space.

Now let

î [ q>(x,y)l-nda(y)

and

uiix) = —?— f <p(x,y)l-ndar(y), i = 1,2,

and compute

' U0-y|2(1-w)dor(y)

= — I f ƒ (r2 + (f - cos Ö)2 + sin2 ö) rn~3dr ) dt.
">«-i Jo \Jo J )

Since

"~ (r2 + a)1"" r"-3dr = fl"w/2 T (r2 + l)1"" rn"3dr(=: a-"/2c„),
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weget

ui(xe) = 2"~lWn-3Cn r((t-cose)2 + sin2eynl2dt.

By change of variables, this is simplifiée! into

2 " ~ l a W " sin1"" 0 r sin""2 Ç dt (6.3)
">*-i Je

This expression makes sensé even at 9 = n, since

has a well-defined limit l / ( n - 1) as 9 -* TT. We may obtain the formula for U2(XQ) just
by replacing 9 by a - 9 in (6.3):

Hence

u2(xe)

When a = TT, this becomes

u(xe) = n~3 sin1""

and thus

n{(X_e) T sin«-2
Ja-e

fo

at XQ. Since this metric coïncides with the Poincaré metric ( 1 lxn
2) go, we must have

Therefore

- i

u(x0) = (f sin"-2Çd^ (sinl-ne f sin"-

^ ^ " ( a - 6) f sin"-
Ja-e
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Since gQ is invariant under the similarities/translations as above, u satisfies u(rx) =
r1""u(jc), r > 0, and u(x + v) = u(x)t v € Rn~2. Hence

u(x) = (f smn~2ZdA ((rsinO)1-" f sin

in(«-Ö))1-/ï f s in^g+(rsin(«

where r and 0 are such that xn-i = r cos 0 and JC„ = r sin 0.

When n = 2, this becomes

The Gaussian curvature of go = M2 go is a function of 0 alone, and it is given by the
formula

<p — cpcp

K is symmetrie with respect to 9 = a/2, négative everywhere and asymptotic to - 1 as
0 — 0. Computation using Mathematica indicates: K ^ - 1 everywhere; if a < 7T, K is
monotone increasing in (0, a/2), and K(a/2) s c « -1/2) as a \ 0; if a > n, there
exists 0(a) G (0, a/2) such that K is monotone increasing in (0, 0(a)) and monotone
decreasing in (0(a), a/2), and 0(a) N 0, K(9(a)) s c K 0) and K(oc/2) s c ' « -4/5)
a s a / 2ir.

It is interesting to compare our metric (6.1) with the metric (of class C u ) constructed
by W. Thurston (unpublished), B. Apanasov [1] and R. Kulkarni-U. Pinkall [13], which is
also Möbius-invariant. For example, for the quasi-bail above with n = 2 and a > TT, the
latter is given by h& = t/2go with

l/(rsin0), ' 0 < 0 < f,
1/r,

The ratio u/ v attains its minimum at 0 = a/2, and hence

v sin(a/2)
2
— = 0.63... as a s 2n.
n

On the other hand, computer experiment indicates that sup u/v y c « 2) as a s 2n.

It will be also interesting to compare our metric with that constructed (for n > 3)
byH.Leutwiler [14].
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