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CANONICAL METRIC ON THE DOMAIN OF
DISCONTINUITY OF A KLEINIAN GROUP

Hiroyasu IZEKI & Shin NAYATAN/

Introduction

A Kleinian group is a discrete subgroup of the conformal automorphism group of
the round sphere. Its domain of discontinuity is by definition the largest open subset of
the sphere on which the group acts properly discontinuously. The quotient of the do-
main by the group inherits the flat conformal structure of the sphere. In [17] the second
author introduced a canonical Riemannian metric on such a manifold which is compat-
ible with the conformal structure (see §2). He observed that the curvature of this metric
well reflects the Hausdorff dimension of the limit set of the Kleinian group. This recovers
R. Schoen and S.-T. Yau's earlier result [22] on the relation between the Yamabe confor-
mal invariant of the quotient manifold and the Hausdorff dimension of the limit set. Our
result roughly states that the smaller the dimension of the limit set, the stronger the posi-
tivity of curvature. Via the classical Bochner technique, this leads to a vanishing theorem
for the cohomology of the quotient manifold. The first author [11] then used this vanish-
ing result to generalize R. Bowen’s theorem [8] on the Hausdorff dimension of the limit
set of a quasi-Fuchsian group to higher dimensions (see §3, §5).

This article surveys various aspects of the canonical metric, and as such it is partly
expository. It, however, also contains new results which we have obtained after the writ-
ingof [11], [17], [18).

This paper is organized as follows. In §1 we review basic definitions and facts about
Kleinian groups and Patterson-Sullivan measures. In §2 we give an interpretation of the
canonical metric from the viewpoint of hyperbolic geometry. We also discuss the nor-
malization of metric, as well as the behavior of the metric as the Kleinian group is con-
tinuously deformed. In §3 we study the total scalar curvature (precisely, the integral of
the (dimension)/2-th power of the absolute value of scalar curvature) of the canonical
metric when the Kleinian group is a quasi-Fuchsian group, and prove that this invariant
has a sharp lower bound, which is attained by the hyperbolic metric (= the canonical
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10 H.IZEKI & S. NAYATANI

metric associated with a cocompact Fuchsian group). In §4 we give a vanishing theorem
for the cohomology group and the space of L2-harmonic forms of a convex-cocompact
hyperbolic manifold. In §5 we generalize the vanishing theorem in [17] to an arbitrary
flat Hilbert space bundle, and give an application. In §6 we construct distinguished met-
rics on certain quasi-balls, following the idea which we used to construct the canonical
metric.

1. Preliminaries

Let (B™*!, h) denote the Poincaré ball model of hyperbolic (n + 1)-space, where
B"™! = {x € R"™! | |x| < 1} and h is the Poincaré hyperbolic metric

2 2 n+l
= i\2
"= (1— |x|2) 2_ax')
i=]

Let S” = {x € R™! | |x| = 1} and let gy be the standard induced metric on §”. As is
well-known, each isometry of (B"*!, h) extends to a diffeomorphism of B"+1(= B"*! u
S™), and, restricted to S”, gives a conformal automorphism of (S”, g). In this way, the
isometry group of (B"*!, h) may be identified with the conformal automorphism group
of (S”, g), and we denote both of these groups by the common notation Méb(#).

Let I' be a Kleinian group, that is, a discrete subgroup of Mob(n). For the sake of
simplicity, we assume I'is torsion-free throughout this paper. Its limit set A(I) is defined
as the set of accumulation points in B"*! of I-orbit of any point in B"*!. Since I acts
properly discontinuously on B™*!, A(I) lies in S”. Let d(I) denote the Hausdorff dimen-
sion of A(I). The complement Q(I) = S” \ A(I) is called the domain of discontinuity
of T, which is possibly disconnected. T acts on B™! u Q(I) properly discontinuously,
and freely since I is torsion-free. Hence the quotient Y = [B™*! U Q(I)]/T is a smooth
manifold-with-boundary. Its boundary X = Q(I) /T'inherits the flat conformal structure
of §”".

DEerFINITION. — We say that a Kleinian group I'is convex-cocompact if the quotient
C(A(D))/Tis compact, where C(A(D)) is the hyperbolic convex hull of A(I) in B"*!,

It is known that a Kleinian group I'is convex-cocompact if and only if the associated
manifold Y is compact. It is also worth noting that I'is not necessarily convex-cocompact
even though X is compact.

The critical exponent 6(I) of a Kleinian group I'is defined by

oD = inf{s >0 I Z e~ sy o oo},

yerlr

where x,y € B™*! and d is the hyperbolic distance function on B"*!, Notice that 5(I) is
independent of the particular choice of the points x, y. Itisknownthat 0 < 6(I) < n
and ifT'is non-elementary, that is, A(I) contains at least three points, then 6(I) > 0.
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S. J. Patterson [21] and D. Sullivan [23] introduced a distinguished family of mea-
sures supported on the limit set of a Kleinian group. We review Patterson-Sullivan’s con-
struction. For x € B"™! and s > & = §(I), we define a measure y, ; on B"*! by

1 —sd(x,y0
Uxs = Z e~ Sdxy )5),0'

2 e—5d(0,y0)
yer yer

where 6,9 denotes the Dirac measure at y0. By the triangle inequality, we have
e$ d(0,x) < Hy.s ('BT.LT) < e d(o,x).

In particular, u, ;(B™1) is bounded independently of sintherange § < s < & + 1.
Hence there exists a sequence s approaching 6" such that the measures iy j converge

weakly to a measure u, on B"*!, In fact, it can be shown that for any y € B"*!, Hys, also
converge weakly, whose limit we denote by u,,.

We summerize the properties of the measures u, for convex-cocompact I'as

PrOPOSITION 1.1. — Suppose thatT is convex-cocompact. Then the measures Uy, X €
B"™*1, have the following properties:

(a) Each py is supported on A(I).

(b)
e = e~ SD bl o gl

where by(x, -) is the Busemann function of hyperbolic space with respect to the reference
point0.

(c)
YsHx = lyx, x€B™, yel

(d) po coincides, up to a constant multiple, with the restriction of the é(I)-dimensional
Hausdor{f measure to A(I). In particular, d(I) = 6(I).

It is known that the assertions (a), (b), (c) and the equality d(I) = (I in (d) hold
more generally if I is non-elementary and geometrically finite. Here we call I' geometri-
cally finiteif it has a fundamental polyhedron in B"*! with finitely many faces. A convex-
cocompact group is characterized as a geometrically finite group without parabolic ele-

ments. When T is not geometrically finite, it may happen that 3 ¢ 44(0¥® <« . Then
yer
u, will be again a sum of weighted Dirac measures placed on the I-orbit of 0. To avoid

this and obtain a measure supported on A(I), a certain modification is necessary in the
above construction of y,. With this modification made, the assertions of Proposition 1.1
hold except (d). We do not go into the details of this point and refer the reader to Nicholls’
book [19] or the papers cited above.

DEFINITION. — The family of measures {u, | x € B™1} is called a Patterson-
Sullivan density (with respect to the reference point 0), and a family of measures with
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the properties (a), (b), (c) of Proposition 1.1 and with pg a probability measure is called a
conformal density (with respect to the reference point 0).

It is known that a conformal density (exists and) is unique for geometrically finite T
[24]. Moreover, for geometrically finite I, a family of measures with the properties (b) and
(c) of Proposition 1.1 must satisfy (a); such a measure family turns out to be the unique
conformal density.

We now let x approach a point T € Q(I). Since

1-|x|?
|x - €12’

(1-1x2\°
Hx Ix_glz I‘O

by Proposition 1.1 (b), and hence u, converges to a zero measure as x — {. However, if

bo(x, E) = —log xe€ B™, ge s”,

we have

5
we divide u, by [(1 - |x!2)/2] , the resulting measures i1, = @(x, E)"‘suo converge to a
positive finite measure b = (T, E) %ugasx — T, where

1 —_—
Plxy) = lx- yi?, x,y € Bnl,

We shall refer to the new family of measures {{i, | x € B"*! U Q(I)} as a modified
Patterson-Sullivan density.

2. Canonical Metrics

Let I'be a torsion-free discrete subgroup of Méb(n) with 6 = 6(I) > 0, and let Q(I)
denote the domain of discontinuity of I. In [17] we introduced a canonical metric' g on
Q(IN, given by

2/6
(/ <p(x,§)‘5duo(§)) (80)x
A(D

[, (AM]Y% (g)x, x € QD,

8x

where pg and i, are the measures as in the previous section. The metric g is I-invariant.
Infact, foranyy € T

@(yx, E) 0 dug(¥)

/ @(yx, y&)0d(y* uo) (§)
A(D AD

/ Uy () Jy (B, )y (B)P duo ()
AD

Jy (08 / @ (x, 5 duo(®),
AD
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where j, = exp(~by(y~'0,-)). Since y*g = j)z, 8. we get y*g = g. Hence g projects
to a metric on the quotient X = Q(I) /T, compatible with the conformal structure. We
denote this metric on X by the same symbol g. Recently J. Maubon [16] proved that
for geometrically finite I, the metric g is complete if and only if I' contains no parabolic
elements of rank less than 6.

Since the argument in [17] to deduce the I-invariance of gis valid on B"" U Q(I), g
naturally extends to ametricon Y = [B"*! U Q(IN]/T, which we continue to denote by g.
By using the hyperbolic metric, this metric may be rewritten on B™! as

2/6
( / e““’°""§’duo<§>) hx
A(D

e (AMNI?% by, x € B™1.

8x

It is worth mentioning that, when I' is convex-cocompact, (Y, g) gives a natural con-
formal compactification of the hyperbolic manifold (B**!, h) /T. It should also be men-
tioned, however, that this metric on Y is not really a new product. Indeed, if we identify
B"*! with a hemisphere in $”*! and extend the action of I'to that on $"*! in the standard
way, the metric is nothing but the restriction of the canonical metric of Q"*! (I /T, where
Q"*1(I) is the domain of discontinuity of T viewed as acting on $"*!.

Since g is conformally flat, its curvature is completely determined by the Ricci ten-
sor Ric. To write down the formula for Ric, we introduce a symmetric bilinear form B,
defined by

B, = / dbO(x,E) ® dbo(x,g) dv,(&)
A(D

—/ dbO(x,{) de(E) ®/ db()(x'g) de(E): X € Bn+l.
AD A

where vy = py/llusll with Il - || denoting the total mass. B is nonnegative by Schwarz’

inequality, and
2

trh Bx =1- ‘/ dbO(x,{) de(E)
AD

The Ricci tensor and scalar curvature of the canonical metric g (on B"*!) are given by
Ric=-(n-1)(6+1)B+(n-1-6) (trg B) g

S=n(n—-1-258)trgB

respectively. Letting x € B™*! approach a point of Q(I) and restricting to the tangent
space of the sphere, we recover the formula for the Ricci tensor of g (on Q(I)) given in
[17]:

Ric=—(n-2)(6+ 1A+ (n-2-20) (trgA) g

S=(n-1)(n-2-28)trgA, 2.1)
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where

— -2
Ay = /A(I’) ((D dp ® ch)(X'E) dvx (&)

_ -1 -1
[ (@740) p du®e [ (97d0),, avi®. x< 0.

Note that since v, = f1, /|l i, |, it is defined for x € Q(T) also.

The above construction of the canonical metric actually depends on the choice of
reference point of hyperbolic space, as which we have used the center 0 of B"*! so far.
Assuming that the uniqueness of conformal density (with respect to a fixed reference
point) holds for T, we now vary the reference point; for each a € B"*!, we have the
metric

g = u@ A%y, x e B™,

where {u{? | x € B"*'} is the unique conformal density with the reference point a.
Then we have

g@ =( (°)(A(D)) -2/6 g

Indeed, this identity is an immediate consequence of

i = (1 am)) ™ 1, (2.2)

which we now prove. Using

bo(x, &) = ba(x, &) — ba(0,8) = ba(x, &) + bo(a, E),

we compute
0 _ ,~8b(x8 0
pO = g SboxB O
= g 0balxB p~Sboad) (0
= g SbaxB O

By the uniqueness of conformal density, we must have u{? = const u{%’. In particular,
p'® = const u'?, and hence const = p'? (A(I)). This proves (2.2).

We now set
F(a) = pg’ (AD) = / @R ap®(®), aeB™,
AD

so that g'@ = F(a)~?/%g!®. Note that F is I-invariant and tends to zero as a approaches

a point of Q(I). Hence F can be viewed as a continuous function on the manifold-with-
boundary Y = [B™! u Q(D)1/T which is positive in the interior and vanishes on the
boundary. We now suppose that I is convex-cocompact, so that Y is compact. Then F
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attains its maximum at some point a2 € B"*!, and g{® is minimal among all its compan-
ion metrics. We shall refer to g'® as the minimal canonical metric. Note that F does not
always attain maximum without the assumption of convex-cocompactness; consider I
with single limit point, for example. It is also worth mentioning that since

dF, = —6/ dbo(a,g)du(aO)(E).
A

apoint a € B™! where F attains its maximum (if exists) is the barycenter of the mea-
sure p?, which coinsides with that of u{?; bar(u{?’) = bar(u{?) = a (see §3 for the

a
definition of barycenter).

For ot € Méb(n), letT’ = ola~! (the “push-forward" of I'by &) and label the corre-
sponding objects by ". Then we have

1 (0) — ,,(a10)
o, @ =l 0. 2.3)
Indeed, for s > 6
1 -1
T _ —sd(x, 0
‘x*Ux_fq) - 2 e—sd(0,aya~10) Ze slnore )6)’"‘_10
yer yer
1 _sd(a'x,ya—10
= Z e_sd(a-lo,ya—lo) Ze sda” ' x,ya )Jya‘IO'
yer yerl
Letting s — 6, we obtain (2.3).
By (2.3)
gx’ 0 _ u; (0)(A(r’))2/5hx
-1
= & 2(AMhy

since A(T") = a(A(D)). It follows that
(‘x*g’ (0))x = u(x(x—lO) (A(D)Z/6hx = g;a_lm.

This formula means that the conjugation of I has the same effect on the metric as the
change of reference point. Clearly, & pulls back the minimal canonical metric for I (if
exists) to that forI'".

Next we show that the canonical metrics vary continuously on the set of convex-
cocompact Kleinian groups. Here we only consider the behaviour of g!®’, which we drop
the superscript and denote simply by g. It is not, however, so difficult to see that g@
for fixed a also varies continuously along deformations of convex-cocompact Kleinian
groups.

Let Hom(G, Mab(n)) be the set of representations of a torsion-free group G into
Mob(n). The topology on this set is given by the pointwise convergence of representa-
tions as maps into Mob(#). If G is finitely generated, this topology is equivalent to that
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given by the uniform convergence of representations on a finite set of generators. We de-
note by C(G, Moéb(n)) the set of faithful representations whose images are discrete and
convex-cocompact.

THEOREM 2.1. — On the set C(G, M&b(n)), the canonical metrics vary continuously.
More precisely speaking, ifp j — p in C(G,Mob(n)), then there is a sequence of diffeom-
rphisms g j : (Q(D /T, g) — (Q(I})/T}, gj) such that w’;gj — g in C* -topology, where
I; = pj(G),T=p(G), gj and g are the canonical metrics for ; andT respectively.

The basic ingredient of the proof is the following lemma.

LEMMA 2.2. — Assume G is torsion-free.
(a) C(G,Mo6b(n)) is open in Hom (G, Mob(n)).
(b) The critical exponent regarded as a function on C(G, Mob(n)) is continuous.

(c) The map p — ux(p(G)) for fixed x is continuous on C(G, Mob(n)), where pux(p(G))
denotes the measure i, for p(G).

The first and the second parts have been shown in {7]. A different proof in terms
of conformal geometry on Q(I) can be found in [12]. We give the proof of the third part
here.

Proof of (). First recall that, for any Kleinian group I, the Patterson-Sullivan measure
Yo associated to T'is a probability measure on S”. Suppose px — p in C(G,M&b(n)).
We denote p(G) by I. And let uf and 6; be the Patterson-Sullivan measure at x and
the critical exponent of px(G) respectively. By (b), 6y — & = 6(I). Since the space
of probability measures on a compact metric space is compact with respect to weak-*
topology, there is a subsequence of {uf}, which we denote by { u({ }, and the limit gy of
the subsequence. Let f be a continuous function on S”. Then, by Proposition 1.1 (b), we
have

/ F®) dui® = / f(©)e8it=D g, (E).
sn sn

By (b) and the continuity of by(x, &), the function f (&) exp(-6; bo(x, §)) converges to
f (&) exp(—6 by(x, &)) uniformly on S", namely

€= 22%2‘( f(g)e—tsbo():.g) _ f(g)e—ﬁjbo(X.E)| -0 as ] - o, (2.4)
On the other hand,

F(®)e =B aqu,(E) - / (& du,"(al
Sn sn

<

[ st mPanm - [ r@etneDaieo]

+

@R - /S f®etinBay (§)| :
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and the uniform convergence (2.4) implies that the second term in the right-hand side
is less than ¢ since u({ 's are probability measures. Together with ug — g, we see U P
px = e ¥%x8y, Therefore {u,} cyn+1 satisfies Proposition 1.1 (b). Forany h € G,
Yj = pj(h) — p(h) = y uniformly on S". Then it is easy to see yjfu,{ - y*uy byan
argument similar to the above. On the other hand, again by Proposition 1.1 (b), for any
continuous function f on §”

/s S F®au), @) = /s F@et TP ayl ).

Since the Busemann function bg(x, §) is Lipschitz continuous with respect to x for fixed
& by (y}lx, ) — by(y~'x, £) uniformly on §”. This implies the uniform convergence

FE)e S0 EE gy gmsbotyTixB)

for any continuous function f on §”. Combining with u({ — Mo, We see
FE)e8i =D gyl gy ~ / F(Be7 000 gy (E)
sn sn

for any continuous function f by the same argument as above, which means p }’, Sy T
i

Hy-1,. Thus we have Y¥uy = Hy-1, by the uniqueness of the limit, which is equivalent
to say y«My = Hyx. Therefore {u,} satisfies Proposition 1.1 (c). By the uniqueness of
the conformal density for convex-cocompact Kleinian groups (cf. §1), {fx} ,cyn+1 must
be the Patterson-Sullivan density of I. Note that our proof shows any convergent sub-
sequence of { u(’,‘} has g as its limit. Suppose our original sequence { u(’,‘ } itself does not
converge to yg. Then there is a subsequence of {u(’,‘ } which does not converge to pg. On
the other hand. because of the compactness of the set of probability measures on S”,
this subsequence must contain a convergent subsequence whose limit is not po. This
contradicts what we have seen above. Thus { u(’,‘} itself must converge to yp. By the trans-
formation law (b) in Proposition 1.1 and (b), the same is true for {u¥} with any fixed x.
This completes the proof. O

Proof of Theorem 2.1. As was shown in [12], for large j, there is a quasiconformal
mapping g j which conjugates p j to p. By the construction of y j in the proof of Theorem
1 in [12], it is an equivariant diffeomorphism between Q(I) and Q(Tj) and ¢; — id
with respect to C* -topology on each compact subset of Q(I). Also y ; is an equivariant
homeomorphism between A(I) and A(T;),and ¢/ j — id uniformly on S". We denote the

critical exponent and the Patterson-Sullivan measure po of I'; by 6 ; and u({ respectively
as in the proof of Lemma 2.2. Then for & € Q(I)
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2/6;
* 1 =8 j !
(Wige = (/A(r_)(§|w,-(§)—n|2) dud(n)) (W] 80
J

1 7 2 _61 ] , 2/6! *
= (,/,\(n (:2' IWj(E) - Wj(nj)l ) duo((pj(nj))) (ngo)g
1 , -8 o 2/6;
= (/ N (E IW}(E) - Wj(nj)lz) ! d((lljﬂ('),)(n )) (l[/j‘-go)g,
A(

where @ j(n’j)
C*-topology on each compact subset of Q(I). This, together with § j — 6 and By — Ho,

implies that g; — g uniformly on each compact subset of Q(I) by a slight modification
of the argument in the proof of Lemma 2.2

n. Recall that ¢ ; — id uniformly on §", and ¢ ; — id with respect to

This is also true for the derivatives of '} g ;s since these derivatives come from those
of |E — n|~9%, ¢ j and go with respect to . Therefore w’;gj — g with respect to C*-
topology on each compact subset of Q(I. Since Q(I /T is compact and  j's are equiv-
ariant maps, this gives the desired sequence of diffeomorphisms. O

In [12], the first author proved that the Teichmiiller space of flat conformal struc-
tures on a manifold satisfying certain conditions can be embedded into the space
C(m, (M), M6b(dim M)). We can compactify the Teichmiiller space by compactifying its
image in Hom (m; (M), M6b(dim M)). Moreover, under certain assumptions, it is possi-
ble to associate a Riemannian metric to each point of the boundary. These metrics are
constructed in the same manner as our canonical metrics, and the metrics vary contin-
uously up to the boundary. This will be useful for investigating the Teichmdiller space of
flat conformal structures and topology of conformally flat manifolds.

3. Quasi-Fuchsian Groups

Let M6bg(n) denote the identity component of Méb(n). Let Iy be a convex-
cocompact discrete subgroup of Mobg(n) whose limit set is a round p-sphere S” for
some p < n. Then BP*! = C(SP) is invariant under I, and the quotient B”*! /Tis com-
pact. In other words, I is an extension of a cocompact lattice in M6b( p). We assume this
lattice lies in Mobg( p). Let p : Iy — Mobg(n) be a faithful representation whose image
I' = p(Ip) is discrete and convex-cocompact. In this paper, we call such a representation
a quasi-Fuchsian representation and its image a quasi-Fuchsian group. By the result of
R. Bowen [8], H. I1zeki [11], M. Bourdon [6] and C.-B. Yue [25], we have d(I) > p (= d([}))
with the equality sign holding if and only if A(T) is around p-sphere. If p=n-1 2> 2,
this last condition implies, by the Mostow rigidity, that I'is conjugate to I, in Méb(n).

More recently, G. Besson, G. Courtois and S. Gallot [4] have given a new proof of this
result by studying the Jacobian of two maps defined in terms of the Patterson-Sullivan
measures and the barycenter map. To describe one of these maps, we first recall [10] that
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for a measure p on §” without atom, its barycenter, denoted by bar(u), is defined as the
unique critical point of the function

By, (x) =/ bo(x, §) du(¥), xe B™.
S’l

The barycenter map bar has the equivariance property
bar(y.u) = y(bar(y)), y € Méb(n). 3.1

We also recall the existence of a canonical homeomorphism f : A(I) = A(lp) = SP
satisfying

FOB=p'NfE, yeL EcAD. (3.2)
We then define the map F : B"™! — BP*! by
F(x) =bar( fyuy), xe€ B™,

where i are the Patterson-Sullivan measures and f, represents the push-forward of
measures by f. By Proposition 1.1 (c), (3.1) and (3.2), F satisfies

F(yx)=p Y (y)F(x), yeTl xe B"™.

It is proved, moreover, that F is a smooth map.

We now observe that F naturally extends to a map defined on B"*! U Q(I). Indeed,
the map F remains unchanged if we use the modified Patterson-Sullivan measures fi,
to define it instead of u,, and /i, are defined for x € Q(T) also. One can show that the
extended map F : B"*! U Q(I) — BP*! is also smooth. Since both F and the action of T
extend smoothly up to Q(I), F satisfies

Fyx)=p Y (F(x), yeTl xe B ua®. (3.3)

We now suppose p = n — 1. Then Q(I) consists of two contractible connencted
components, both of which are invariant under the action of I. Take one of these con-
nected components and denote it by Q. We shall denote the restriction of F to Q, by
G, and study the Jacobian of the mapping G : Q¢ —~ B". We may use vy = ji, /|| i, ||
instead of fi, to define G. Since

AR () = / by d(fuv)(®
sn-

/ b0y, pcery Ave(E),
AD

setting y = G(x), we have

1
J @(x, E)-%duo(E)

/dbO(G(x).f(E)) @(x, &) %duy(¥) = 0.
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Taking covariant derivative in the direction u € T, S”, substituting v € Tg)B" and
rearranging, we obtain

/deO(G(x).f(E))(dG(u): v) dv (&)

= 5/ <(<P'ld¢7)(x.§) -/(Cp“ldqv)(x.g) dvx(E)) (u) dbo(Gx), £ &) (V) dVx(E)

1/2
< o] (a0 )]

172
X [/ dbo(Gx). s zn (V) d"x(g)] :

If we define linear endomorphisms H and K of Tg(x)B" by

h(H"')=/db0(G(x).f(§))(')2 dvx(§),

h(K-,-) = / deO(G(x).f(g))(‘v =) dvx(8),
where h is the hyperbolic metric, the above estimate may be rewritten as
|h(K o dG(u), v)| < & g(Au, w)'"?h(Hv, v)'?,

where g is the canonical metric on Qg (C Q(I)). By elementary linear algebra, we obtain
the estimate

det K| Jac G| < 6" (det A)V?(det H)/2.

Since
deo(x,E) = hy - dbO(x,E) ® dbO(x,E)

for the Busemann function of hyperbolic space, we have K = I — H. Hence

(det H)1/2

< 6"(det A)!/2 :
| Jac G| < 6"(det A) deI 1)

We now assume n 2 3. It has been proved by G. Besson et al. [3] that the inequality

(detH)l/Z < (det %1)1/2 nn/2
det(I —H) ~ det(1-11) (n-D"

holds for any positive symmetric matrix H such that tr H = 1. Using this together with
det A < (tr A/n)", we finally obtain

n
| Jac G| < (%1) (tr A)™2,
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By (3.3), G induces a mapping from X = Q,/I to B" /I, which we denote by the
same symbol G. It is clear that G induces an isomorphism between the fundamental
groups of X and B"/T; in particular, G is a homotopy equivalence. Since deg G = +1,

/ Uh / G*vp
BT, X
/ Jac Gy,
X
é

(n— l)n/X (trgA)n/2 vg.

Using (2.1), we obtain the following assertion on the total scalar curvature:

N

THEOREM 3.1. —  Let Iy, I'and Qg be as above, g the canonical metric restricted to
X = Qy/I, and assumen > 3. Then we have

ni2 n—1\" (26 - n+2\"?
_s,)"?y ;( ) ( ) / (=Sp)""2 v,
A( g) g o n B"[Ty

The constant on the right-hand side is equal to 1 when 6 = n—1, and it is monotone
decreasing from 1 to (2:1)"(222)n/2 jp the range n — 1 < 6 < n. On the other hand, it is
known [2] that the hyperbolic metric £ is a local minimizer of the functional

g~ / |sg|n/2 v
B" [Ty

defined on the space of all Riemannian metrics on B"/Ij.

4. Cohomology and L2-Harmonic Forms of Hyperbolic Manifolds

A complete orientable hyperbolic manifold can be written in the form H™ /T, where
H™ is hyperbolic m-space and I'is a torsion-free discrete subgroup of Mébg(m — 1), the
group of orientation-preserving isometries of H™. Throughout this section, we assume
that T is convex-cocompact, so that the manifold-with-boundary Y = [B™ u Q(I)]/T
is compact. Via a standard embedding Mébg(m — 1) ¢ Mobg(m + k), unique up to
conjugation, we may regard I as a group of conformal automorphisms of $™**, The
conformal compactification of the product manifold H™ /T x S¥ is then identified with
Z = Q™) /T, where Q™ (I is the domain of discontinuity of I'in $™**. By elemen-
tary algebraic topology, one can show

HP(Z;R) = HP(Y;R) ® HP*(Y,3Y; R).

Note that the second cohomology group in the right-hand side is isomorphic to the
compactly-supported de Rham cohomology group Hf “k(H™T; R). On the other hand,
as a consequence of the vanishing theorem proved in [18], we have:
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() fo+1< p<(m+k)—6-1,then HP(Z;R) =0;

(i) If& isaninteger, § < k=2 and H*!(%; R) = 0, then A(I) is a round &-sphere.

We now suppose that p > 6 + 1. Choosing ¥ = max(2p — m,0) so that the as-
sumption of (i) is satisfied, we obtain H”(%; R) = 0. This in turn implies H?(Y;R) =
HPK(Y,dY;R) = 0aswellas H™ P(Y,dY;R) = H™ P*k(Y;R) = 0 by the Poincaré
duality. On the other hand, it follows from (ii) that if § is an integer, p = 6 + 1 and ei-
ther HP(Y; R) or HP~*(Y,dY; R) (with k as above) do not vanish, then A(I) is a round
6-sphere. We have proved

THEOREM 4.1. — Let H™|T be a complete orientable hyperbolic manifold with T
convex-cocompact. If p > 6 + 1, then HP(Y;R) = H™ P(Y,8Y;R) = 0. If6 +1 <
p < m/2, we also have that H" P(Y;R) = HP(Y,dY;R) = 0. If 6 is an interger and
H*'(H™IT;R) = 0 (or H™ 8~ Y(H™/T;R) + 0if6 < m/2 — 1), then A(I) is a round
6-sphere.

Let s#9(H™T;R) be the space of L?-harmonic g-forms on H™/I. A result of
R. Mazzeo and R. Phillips [15] states that if I'is convex-cocompact and g < m/2,

FT(H™T;R) = HI(Y,dY;R).
On the other hand, the star operator induces an isomorphism
HTH"|GR) = ™ 1(H™T;R),
which corresponds to the Poincaré duality
HY9(Y,oY;R) = H™ 9(Y;R).

As an immediante consequence of Theorem 4.1, we obtain

CoroLLARY 4.2. — Let H™ T be as in Theorem 4.1. If p > 6+l and p + m/2,
SHP(H™|T;R) = ™ P(H™T; R)=0. If5 isan interger, 6+ m/2—-1 and #°* (H™T; R) =0,
then A(T) is a round 6-sphere.

5. Cohomology of Flat Bundles and Its Application

In this section, we assume that I' is not only torsion-free but orientation preserv-
ing; namely, I'is a torsion-free discrete subgroup of the identity component Mébg(n) of
Mob(n). However, after an appropriate modification, most of what we will show in this
section is valid without this assumption.

Letcd G (resp. hd G) be the cohomological (resp. homological) dimension of a group
G, namely,

cd G = max{k | H¥(G; #) # 0 for some ZG-module ¥},
hd G = max{k | Hi(G; &) # 0 for some ZG—module .#},
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where HX(G; .#) (resp. Hy(G; #)) is the k-th cohomology (resp. homology) group of G
with coefficients in #. If we take a Kleinian group I' ¢ Méb(n) as G, H*(T; .%#) (resp.
H, (T;.%)) is isomorphic to H* (Y, .#) (tesp. H, (Y; %)), where Y = [B"*! u Q(I)]/Tand
# is regarded as a local system on Y. If I'is convex-cocompact, I is of so-called type
FL, and cdT = hdT holds (see [9, p. 204]). As was shown in [11, Proposition 4.13], the
inequality cdT — 1 < (I holds for any convex-cocompact Kleinian group I. We will
examine the equality case of this inequality. A naive conjecture is that convex-cocompact
Kleinian groups satisfying the equality have round spheres as their limit sets. At least
this is true for I'isomorphic (as a group, not as a Kleinian group) to cocompact lattice in
Mé&b(m — 1) as we have mentioned in §3, and m turns out to be cd I'in this case. Another
way to state this is:

THEOREM 5.1. — ([8], [25], [6], [4], [11]) LetIy C Mob(m — 1) be a cocompact
lattice. Suppose that p : Ty — Mob(n), n 2 m — 1, is a faithful discrete representation
and thatT = p(Iy) is convex-cocompact. If 6(I) + 1 = m(= c¢dT = cd 1), then A(I) isa
round §(I) -sphere.

It should be mentioned that in [25], [6], and [4], M&b(n) in the theorem above has
been replaced by the isometry group of more general negatively curved manifolds.

Using Theorem 5.4 below, which is a generalization of [17, Theorem 5.2] to an arbi-
trary flat Hilbert space bundle, we can prove the following extension of Theorem 5.1 and
(11, Theorem 5.2]

THEOREM 5.2. — LetTy C Mob(m) be convex-cocompact with cdIy = m. Suppose
thatp : Ty — Mob(n), n 2 m — 1, isa faithful discrete representation and thatT = p(Iy)
is convex-cocompact. If 6(I) + 1 = m, then A(I) is a round &(I) -sphere.

Remark. Since a cocompact lattice I is a subgroup of Méb(cd Iy —1) and Méb(cd Ih—
1) € Mob(cd Ip), T'in Theorem 5.1 satisfies the assumption of Theorem 5.2. If T satisfies
the assumption of [11, Theorem 5.2], then we can take I'itself as I in Theorem 5.2. There-
fore Theorem 5.2 includes both Theorem 5.1 and [11, Theorem 5.2].

The first thing we have to recall is the relation between the cohomology of I'and that
of X = Q(I) /T. Note that, through the homomorphism m;(X) — m;(Y) induced from
the inclusion X — Y, the restriction of a local system on Y to X gives rise to a local
systern on X. Thus ZI-module defines a local system not only on Y but on X.

LEMMA 5.3. — LetT ¢ Mob(n) be a convex-cocompact Kleinian group and & a ZT-
module.
(@) For p < n — cdT, HP(X; &) is isomorphic to HP(T; .#).
(b) For p < n— cdI, H""P(X; &) is isomorphic to Hy(T; &).
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Proof.

(a) SinceY is a compact manifold-with-boundary, by the Poincaré-Lefschetz du-
ality, we have HP(Y,X; %) = Hp1-p(Y;#) = Hpy-p(L.#). Since hdT = cdT,
Hy(T;.%#) = 0for g > cdT, hence HP(Y,X;#) = Ofor p < n+ 1 — cdI. Applying
the cohomology exact sequence for the pair (Y, X'), we obtain the desired result.

(b) Since H" P(Y;&%#) = H" P(I; &) = 0for n - p > cdI, by cohomology ex-
act sequence for the pair (Y, X), H"P(Y;%#) = H"P*Y(Y,X;.9) forn — p > cdl.
By the Poincaré-Lefschetz duality, H"PYY X, #) = Hp(Y;&#) = Hp(I,&). This
proves (b). (I

Take a Kleinian group I' C M6b(n) and a unitary representation p of I. We denote
by %, the Hilbert space with I action via p. The group I acts on Q(I) X%, diagonally,
and we have a Hilbert space bundle E, over X = Q(I) /I, the quotient of Q(I) X, by
the diagonal action. There is a natural metric on the bundle E, and we also have a flat
connection compatible with this metric. We call such a bundle a flat Hilbert space bun-
dle. Since the connection is flat, the covariant differentiation D defined for E-valued
p-forms satisfies D> = 0, and hence we have a cochain complex consists of E-valued
p-forms with coboundary operator D. We denote by H* (X; E) the cohomology of this
cochain complex.

On the other hand, since #, is a ZI-module, 5, defines a local system on X as we
have explained above. We denote by the same symbol 5, the local system on X defined
from ,. Since X is a manifold, the cohomology of this local system #, agrees with
Cech cohomology of the locally constant sheaf naturally defined by the local system 5.
Moreover, by a standard argument (for example, imitate the argument in [5, §8]), we
can prove that this Cech cohomology is isomorphic to H*(X; E). Thus, in particular,
H*(X; ) is isomorphic to H* (X; E).

As a generalization of the vanishing theorem in {17}, we obtain the following van-
ishing result for H* (X; E). We will use the second part of this theorem to prove Theo-
rem 5.2.

THEOREM 5.4. — LetT C Méb(n), n 2> 3, be a Kleinian group such that Q(I) /T is
compact, and E a flat Hilbert space bundle over X = Q(I) /T. Denote by & the critical
exponent of T.

(a) Suppose 6 < (n — 2)/n. Then, for integers p satisfyingé+1 < p < n-6 -1,
HP(X,E)=0.

(b) Suppose § is an integer, § < (n—2)/2, and either H>*(X; E) + 0 or H* %~1(X; E) +
0 holds. Then A(T) is a round 6-sphere.

Proof. The first thing we have to do is to construct a new cochain complex whose
cohomology is isomorphic to H*(X; E).

Let AP(E) and D be the linear space consisting of smooth p-forms with values in E
and covariant differentiation respectively. By definition, H* (X; E) is the cohomology of
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the cochain complex {(A* (E), D)}. The standard L?-inner product on A?(E) is given by
(e, B) =/(¢x.B)vg, o«,Be AP(E),(0< p< ),
X

where (-, -) is the inner product on each fiber coming from the canonical metric g on
Q(I) /T and the inner product on #,, and v is the volume form of g. Let us consider
another inner product given by

((, B)) = (&, B) + (Dax, DB).

Denote by W P(E) the completion of AP(E) with respect to the norm || - ||w defined by
means of this inner product. It is obvious that D : AP(E) — AP*!(E) is bounded with
respect to the norm || - |y, and hence D can be uniquely extended to the bounded
operator D : WP(E) — WP*(E). Clearly D> = 0, and we obtain a cochain com-
plex {(W*(E),D)}. Let us denote the cohomology of this new cochain complex by
H*(X;W). We are going to sketch a proof of H*(X;E) = H*(X;W). Let U be an
open subset of X diffeomorphic to R". Then it is not so difficult to see that the Poincaré
Lemma holds for WP(U), where W P(U) is the completion of the space of smooth p-
forms on U with values in E which are bounded with respect to the norm || - ||w. In
other words, the following sequence is exact:

0—o ~wou) 2wy 2wy 2 ...,

where #, is regarded as the set of constant 5, -valued functions on U and t is the natural
inclusion map. Then, by a slight modification of the proof of H*(X; E) = H*(X; %),
one can prove H*(X; W) = H*(X;%). (To prove this one needs to assume X is com-
pact.) This implies H*(X; E) = H*(X; W).

Let us turn to the proof of (a). Note that W P(E) can be considered as the domain of
the closure of D regarded as a densely defined operator L} (E) — L '(E), where LJ(E)
is the completion of AP(E) with respect to the ordinary L>-norm || - || = (-, -)*/2. Thus
we may denote the closure of D by D. Let us denote the adjoint of D : IQ”(E) — szﬂ (E)
by D*, and the (positive) Laplacian DD* + D* D by A. Since E is flat, writing down the
Weitzenbock formula

(Ao, @) = (Vo, Vix) — / R (a, &) vg,
b

we see that the curvature term £, which is a bilinear form on each fiber, is completely
determined by the curvature of cotangent bundle and essentially the same as that in the
Weitzenbock formula calculated in [17, §5]. Thus, under the assumption of (a),
R (x, ) < —c{a, a) at each point for sorne positive constant ¢ as in the proof of [17,
Theorem 5.2] Since

(Ax, @) = (D, D) + (D* o, D* ),

on the kernel of D, we have

(D*eat, D*x) > ¢ Vol(X, g) (&, o).
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Therefore D* : Ker D — I has the bounded inverse, where I = D*(Ker D) and it must
be closed. Thus so does D = D** : I — Ker D. In other words, for any @ € Ker D,
there is 8 € I such that D(B8) = a. Thus HP(X; E) = HP(X; W) = 0.

On the other hand, under the assumption of (b), we have # (&, ) < 0 as in the
proof of [17, Theorem 5.2). Now assume H%*!(X; E) = 0. If Z&(-, -) for (6 + 1)-forms is
negative definite everywhere, then there must be a positive constant ¢ such that
(D*a&, D*a&) > ¢ Vol(X, g)(«, &) holds for any « € Ker D. This implies H¥*!(X; E) =
H®1(X; W) = 0 as we have seen above. A contradiction. Thus (-, -) must have zero
eigenvalue (as an endomorphism on each fiber) at some point. By the equation (20)
of [17], this implies the tensor A defined in [17, §3] (see also §2 of this paper) must have
(n- & - 1)-dimensional zero eigenspace. The same is true if we assume H"~%~1(X; E) =
0. By [17, Lemma 3.2 (b)], A(T) must be contained in a round (§ + 1)-sphere S. Since
6 +1 < n,Tis convex-cocompact by [11, Lemma 2.2 (2)]. Therefore cdT < é + 1 and we
have n—-6-1 < n—cdT. SupposecdTl < 6+1. Thenwehaved+1 £ n—-6-1< n—cdT
(we are assuming é < (n — 2)/2). Together with our assumption, Lemma 5.3 (a) implies
either H3*1(I;4,) = 0 or H"%~!([;%,) + 0. On the other hand, wehave cdT < § +1 <
n — 6 — 1. A contradiction. ThereforecdT > 6 + 1, and hencecdT'=6 + 1.

Suppose the round (6 + 1)-sphere S above is the minimal round sphere contain-
ing A(I). Then I'leaves this S invariant. By [11, Theorem 5.2], A(I) is a round é-sphere.
If S is not the minimal round sphere containing A(I), then the minimal one S’ has the
dimension strictly smaller than 6 + 1. On the other hand, since 6 = d(I) by convex-
cocompactness, the dimension of S’ cannot be strictly smaller than 8. Hence the dimen-
sion of S’ is §. Since I'leaves S’ invariant, I' leaves the hyperbolic (§ + 1)-plane whose
boundary is S’ invariant. Since ¢dT = 6 + 1, I must act cocompactly on this hyperbolic
(8 + 1)-plane. Therefore A(I) coincides with S’. This completes the proof.

Remark 1. Since our bundles in Theorem 5.4 may be infinite dimensional, we can-
not expect that each cohomology class is represented by a harmonic form. Therefore the
ordinary Bochner technique breaks down in our situation. However, as we have seen,
Weitzenbdck formula still tells us the vanishing of cohomology. The first author learned
this method from P. Pansu’s talk [20].

Remark 2. The important point in Theorem 5.4 is that the second part is valid for
any flat Hilbert space bundle. In [17], the proof of the corresponding part of Theorem
5.2 was carried out by a rather standard method using the de Rham decomposition and
the classification of product conformally flat manifolds. Though this method cannot be
applied to our present situation, we have been able to prove the second part for any flat
Hilbert space bundle using some remarkable properties of our canonical metric.

Let

cdz T'= max{k | H*(T; 5,) = 0 for some 5},
hds I'= max{k | Hx([;5%,) = 0 for some 5#%,}.

Clearly cdT > cdy I'and hdT > hds I'hold, though it is not clear whether the equality
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holds or not. For a convex-cocompact Kleinian group I, we also have ¢cdT = hdT 2>
hd,T.

LEMMA 5.5. — LetT be a convex-cocompact Kleinian group. Ifeither 5(I)+1 = cd T
or () + 1 = hd, I holds, then A(T) is a round 5(T)-sphere.

Proof. Put § = 6(I). By extending the action of I' to s" for sufficiently large n’
through the inclusion Méb(n) — Méb(n’) and replacing n with n’ if necessarry, we
may assumeboth 6+1 < n—cdTand 6 < (n-2)/2.Ifcds I = §+1, then there is #, such
that H**} ([ %,) = 0. ByLemma 5.3 (a), H®*\(I; 56,) = H¥*)(X;96) = H®*'(X; E) = 0,
where E is the flat Hilbert space bundle defined from . Similarly, if hd,T = 6 +
1, by Lemma 5.3 (b), there is 5, such that Hs4) ([ %) = H"%-1(X;5) = 0. Thus
there is a flat Hilbert space bundle E’ such that H”"9~1(X; E’) # 0. Now apply Theo-
rem 5.4 (b). O

LEMMA 5.6. — LetIy C M6b(m) be convex-cocompact with cdIy = m. Then there
exists a Hilbert space 3, with unitary action of Ty such that H,, (Io; #,) + 0. In particular,
hdy ro =cd ro.

Proof. By (11, Proposition 4.6], H™ (I, Z[}) is isomorphic to the 0th reduced homol-
ogy Hy(Q(Ip), Z) of Q(Iy). Note that Hy(Q(I), Z) is a free abelian group and its basis con-
sists of connected components of Q(Iy). Thus there is a natural Iy-action on Hy(Q(Ip), Z)
which permutes the basis. Therefore Hy(Q(Iy), Z) ® C (or Hy(Q(Ip), Z) ® R) admits a [~
invariant inner product. Let 5 be the completion of Hy(Q2(Ip), Z) ® C with respect to
the norm given by this inner product. We denote by 5, this Hilbert space with unitary
Ih-action coming from the action of Iy on Hy(Q(Iy), Z). Since Hy(Ip, Z) is the kernel of
the augmentation map, it is a Iy-invariant subgroup of Hy (I, Z). Thus the natural inclu-
sion turns out to be a I-equivariant monomorphism Hy(Iy, Z) — 4#¢,. By the universal
coefficient theorem (see [9, p. 204]), Hp(Ip, #,) = 0. O

Proof of Theorem 5.2. The assumption of Theorem 5.2 and Lemma 5.6 implies
hdI'=hd, I = § + 1. Then apply Lemma 5.5 to I. O

6. Metrics on Quasi-Balls

Let Q be a domain in R” with compact smooth boundary 3. Following the idea
which we used to construct the canonical metric, we define a Riemannian metric g on
Q by

1 1-n n-1
g = /w(-,y) do(y) 8o, (6.1)
Wp-1 Js

where w,_) is the volume of the unit (n—1)-sphere, gy denotes the Euclidean metric and
o is the volume element of X defined with respect to the induced metric. The constant
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1/wy-) is put so that the metric coincide with the Poincaré metric when Q is the unit
ball. Let y : R” — R” be a Mobius transformation. Let Q* = y~1(Q), and let o* be
the volume element of =* = y~!(X). By the same computation as was used to show the
I-invariance of the canonical metric (see §2), we obtain

Y*8a = ga+. 6.2)

In particular, gq is invariant under the Mébius automorphism group of €, i.e. the group
of Mébius transformations preserving Q2 . When y is allowed to map the point at infinity
into X and thus =* is noncompact, we may still define go+ by (6.1), and (6.2) continues
to hold in this case.

We now consider special examples of quasi-balls, namely, intersections or unions of
two intersecting round balls. Let B; and B; be such balls, and S; and S, their boundaries,
respectively. We denote by « the angle, viewed from the interior of B; N B, (or B) U B),
at which §; and S, meet. We pick two points p;, p; from S$; N S; and choose a Mébius
transformation of R” = R" U {0} such that y(0) = p, and y(») = p;. Then Q =
Yy 1 (B1nBy) (or y~!(B,UB,)) is a sector bounded by the union X of two half-hyperplanes
2 and Z; which meet with the angle «. We arrange them so that

21 = {(xl,...,x,,) Ix,,_l 2 O,Xn =0}

and
Zo={(x1,...,xp) | Xp_y =rcosa, x, =rsina, r > 0}.

Similarities x — rx, r > 0, and translations x — x+ v, v € R*? = {x,_; = x, = 0}, form
the identity component of the Mbius automorphism group of Q, and its orbits are half-
hyperplanes bounded by R”~2. Thus the set {xs = (0,...,0,co0s8,sin0) | 0 < 6 < «}
represents the orbit space.

Now let
u(x) = /cp(x,y)""da(y)
n-1J3z
and
ui(x) = / ex, ) "da(y), i=1,2,
n-1 Z,‘
and compute
2n—l _
ui(xg) = / lxo = yP'"" do(y)
w'l‘l Zl
2n—l _ ] o0 _
= ———wﬁ-i/ (/ (7 + (¢ - cos 6)2 +sin? 9)' ”r"-3dr) dt.
Wp-1 0 0
Since

[ (e o= [T (2 00)' " e e,
0 0
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we get

Zn-l _ o0 _
u(xg) = 2 Wn-3ln / ((t - cos 0)? + sin? 9) n2 dt.
Wp-1 0

By change of variables, this is simplified into

2"—1 _ mw
2 On3ngnl-ng / sin""2 £ dE. 6.3)
Wnp-1 %]

This expression makes sense even at 6 = 1, since
v
sin! ™" 9/ sin""2 £ d¥
0
has a well-defined limit 1/(n — 1) as & — 1. We may obtain the formula for u,(xg) just
by replacing 6 by « — @ in (6.3):

Zn—lw _aC m
Uy (xg) = — 13" in!'"(ox - 9) / sin" 2 E dE.
Wp-1 o-8

Hence

uy(xg) + uz(xp)

zn-lwn—Scn 1 2 ) ™ )
—_— (sinl'" 9/ sin""“ EdE +sin" " (a — 9)/ sin”~ §d§) .
Wn-1 6 -0

u(xq)

When « = m, this becomes

2n—1w ~3Cn . 1 m .
u(xg) = —2="sin'""0 | sin"?EdE,
Wp-1 0

and thus

2

2n—l _ m n-1

g = (_____w,, 3Cn / sin”2 §d§) sin"2 0 g
Wnp-1 0

at xg. Since this metric coincides with the Poincaré metric (1/x,2) 8o, we must have

zn-lw _ b4 -1
2 __Onaln _ (/ sin"'2§d§) i
Wp 0

m -1 L4
u(xg) = (/ sin" % § d§) (sin"” 9/ sin" 2 £dE
0 0

+sin" (- 0) / sin" % & dg) )
-6

Therefore
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Since gq is invariant under the similarities/translations as above, u satisfies u(rx) =
r'="u(x), r > 0,and u(x + v) = u(x), v € R" 2. Hence

™ -1 ™
ulx) = (/ sin"‘2§d§) ((rsine)‘-"/ sin" 2 EdE
0 e

+(rsin(a — 9))1'"/ sin"‘2§d§> ,

oa-6
where r and 9 are such that x,_; = rcos @ and x,, = rsin 9.

When n = 2, this becomes

1 6 1 oa-0 1
u(x)_rsine(l_F)+rsin(a—9) (1— TT) (—.;cp(e)).

The Gaussian curvature of go = u?g is a function of 6 alone, and it is given by the
formula

P

= ——79—04—'

K is symmetric with respect to @ = «/2, negative everywhere and asymptotic to —1 as
6 — 0. Computation using Mathematica indicates: K > —1 everywhere; if x < 7, K is
monotone increasing in (0, «/2), and K(«/2) 7 c (£ -1/2)as x \ 0;if & > m, there
exists () € (0, ®/2) such that K is monotone increasing in (0, 8(«)) and monotone
decreasing in (6(x), ®/2),and 8(x) ~ 0, K(6(x)) 7 c (< 0)and K(x/2) 7 ¢’ (< —4/5)
aso 7 2m.

Itis interesting to compare our metric (6.1) with the metric (of class C'*!) constructed
by W. Thurston (unpublished), B. Apanasov [1] and R. Kulkarni-U. Pinkall [13], which is
also Mébius-invariant. For example, for the quasi-ball above with n = 2 and & > , the
latter is given by hg = 1% gy with

1/(rsin 8), 00K %,
v(x) =1 1/r, 7<0<a-3,
1/(rsin(a-0)), a-—F <0< a.

The ratio u/ v attains its minimum at 8 = «/2, and hence

u S 1 (2 a)

v 7 sin(a/2) T
—=063... as o7 2m.
™

On the other hand, computer experiment indicates that sup u/v 7 c (< 2) as & 7 21,

It will be also interesting to compare our metric with that constructed (for n > 3)
by H. Leutwiler [14].
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