These notes are an introduction to the recent paper [7], about the well-posedness of the Prandtl equation. The difficulties and main ideas of the paper are described on a simpler linearized model.
@article{SLSEDP_2013-2014____A15_0, author = {David G\'erard-Varet and Nader Masmoudi}, title = {Well-posedness issues for the {Prandtl} boundary layer equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:15}, pages = {1--10}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2013-2014}, doi = {10.5802/slsedp.59}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.59/} }
TY - JOUR AU - David Gérard-Varet AU - Nader Masmoudi TI - Well-posedness issues for the Prandtl boundary layer equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:15 PY - 2013-2014 SP - 1 EP - 10 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.59/ DO - 10.5802/slsedp.59 LA - en ID - SLSEDP_2013-2014____A15_0 ER -
%0 Journal Article %A David Gérard-Varet %A Nader Masmoudi %T Well-posedness issues for the Prandtl boundary layer equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:15 %D 2013-2014 %P 1-10 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.59/ %R 10.5802/slsedp.59 %G en %F SLSEDP_2013-2014____A15_0
David Gérard-Varet; Nader Masmoudi. Well-posedness issues for the Prandtl boundary layer equations. Séminaire Laurent Schwartz — EDP et applications (2013-2014), Talk no. 15, 10 p. doi : 10.5802/slsedp.59. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.59/
[1] R. Alexandre, Y.-G. Wang, C.-J. Xu, and T. Yang. Well-posedness of the Prandtl equation in sobolev spaces. J. Amer. Math. Soc., 2014.
[2] J. Bedrossian and N. Masmoudi. Asymptotic stability for the Couette flow in the 2D Euler equations. Appl. Math. Res. Express. AMRX, 1:157–175, 2014. | MR | Zbl
[3] S. J. Cowley, L. M. Hocking, and O. R. Tutty. The stability of solutions of the classical unsteady boundary-layer equation. Phys. Fluids, 28(2):441–443, 1985. | MR | Zbl
[4] A. B. Ferrari and E. S. Titi. Gevrey regularity for nonlinear analytic parabolic equations. Comm. Partial Differential Equations, 23(1-2):1–16, 1998. | MR | Zbl
[5] C. Foias and R. Temam. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 87(2):359–369, 1989. | MR | Zbl
[6] D. Gérard-Varet and E. Dormy. On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc., 23(2):591–609, 2010. | MR | Zbl
[7] D. Gerard-Varet and N. Masmoudi. Well-posedness for the prandtl system without analyticity or monotonicity. 2014. | arXiv
[8] D. Gérard-Varet and T. Nguyen. Remarks on the ill-posedness of the Prandtl equation. Asymtotic Analysis, 77:71–88, 2012. | MR | Zbl
[9] E. Grenier. On the stability of boundary layers of incompressible Euler equations. J. Differential Equations, 164(1):180–222, 2000. | MR | Zbl
[10] E. Guyon, J. Hulin, and L. Petit. Hydrodynamique physique, volume 142 of EDP Sciences. CNRS Editions, Paris, 2001.
[11] L. Hong and J. K. Hunter. Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations. Commun. Math. Sci., 1(2):293–316, 2003. | MR | Zbl
[12] J. P. Kelliher. Bonus to the paper : Vanishing viscosity and the accumulation of vorticity on the boundary. Available at http://math.ucr.edu/~kelliher/JKPapers.html. | Zbl
[13] I. Kukavica, N. Masmoudi, V. Vicol, and T. K. Wong. On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions. 2014. | arXiv
[14] I. Kukavica and V. Vicol. On the local existence of analytic solutions to the Prandtl boundary layer equations. Communications in Mathematical Sciences, 11(1):269–292, 2013. | MR | Zbl
[15] C. D. Levermore and M. Oliver. Analyticity of solutions for a generalized Euler equation. J. Differential Equations, 133(2):321–339, 1997. | MR | Zbl
[16] M. C. Lombardo, M. Cannone, and M. Sammartino. Well-posedness of the boundary layer equations. SIAM J. Math. Anal., 35(4):987–1004 (electronic), 2003. | MR | Zbl
[17] N. Masmoudi and T. K. Wong. Local in time existence and uniqueness of solutions to the Prandtl equations by energy methods. to appear in CPAM, 2012.
[18] N. Masmoudi and T. K. Wong. On the theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal., 204(1):231–271, 2012. | MR
[19] O. A. Oleinik and V. N. Samokhin. Mathematical models in boundary layer theory, volume 15 of Applied Mathematics and Mathematical Computation. Chapman & Hall/CRC, Boca Raton, FL, 1999. | MR | Zbl
[20] M. Oliver and E. S. Titi. Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Schrödinger equation. Indiana Univ. Math. J., 47(1):49–73, 1998. | MR | Zbl
[21] L. Prandtl. Boundary layer. Verhandlung Internationalen Mathematiker-Kongresses, Heidelberg,, pages 484–491, 1904.
[22] O. Reynolds. n experimental investigation of the circumstances which determine whether the motion of water in parallel channels shall be direct or sinuous and of the law of resistance in parallel channels. Philos. Trans. R. Soc., 174:935–82, 1883.
[23] M. Sammartino and R. E. Caflisch. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys., 192(2):433–461, 1998. | MR | Zbl
[24] Z. Xin and L. Zhang. On the global existence of solutions to the Prandtl’s system. Adv. Math., 181(1):88–133, 2004. | MR | Zbl
Cited by Sources: