The notion of singular limiting induced from continuum solutions (slic-solutions) is applied to the problem of cavitation in nonlinear elasticity, in order to re-assess an example of non-uniqueness of entropic weak solutions (with polyconvex energy) due to a forming cavity.
@article{SLSEDP_2012-2013____A14_0, author = {Jan Giesselmann and Alexey Miroshnikov and Athanasios E. Tzavaras}, title = {The problem of dynamic cavitation in nonlinear elasticity}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:14}, pages = {1--17}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2012-2013}, doi = {10.5802/slsedp.41}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.41/} }
TY - JOUR AU - Jan Giesselmann AU - Alexey Miroshnikov AU - Athanasios E. Tzavaras TI - The problem of dynamic cavitation in nonlinear elasticity JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:14 PY - 2012-2013 SP - 1 EP - 17 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.41/ DO - 10.5802/slsedp.41 LA - en ID - SLSEDP_2012-2013____A14_0 ER -
%0 Journal Article %A Jan Giesselmann %A Alexey Miroshnikov %A Athanasios E. Tzavaras %T The problem of dynamic cavitation in nonlinear elasticity %J Séminaire Laurent Schwartz — EDP et applications %Z talk:14 %D 2012-2013 %P 1-17 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.41/ %R 10.5802/slsedp.41 %G en %F SLSEDP_2012-2013____A14_0
Jan Giesselmann; Alexey Miroshnikov; Athanasios E. Tzavaras. The problem of dynamic cavitation in nonlinear elasticity. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Talk no. 14, 17 p. doi : 10.5802/slsedp.41. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.41/
[1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403. | MR | Zbl
[2] J.M. Ball, J.C. Currie and P.J. Olver Null Lagrangians, weak continuity, and variational problems of arbitrary order J. Functional Analysis 41 (1981), 135-174. | MR | Zbl
[3] J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A, 306, (1982) 557–611. | MR | Zbl
[4] C. Dafermos, Quasilinear hyperbolic systems with involutions, Arch. Rational Mech. Anal. 94 (1986), 373-389. | MR | Zbl
[5] S. Demoulini, D.M.A. Stuart, A.E. Tzavaras, A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy, Arch. Rational Mech. Anal. 157 (2001), 325-344. | MR | Zbl
[6] D.G.B. Edelen, The null set of the Euler-Lagrange operator Arch. Rational Mech. Anal. 11 (1962), 117-121. | MR | Zbl
[7] J.L. Ericksen, Nilpotent energies in liquid crystal theories, Arch. Rational Mech. Anal. 10 (1962), 189-196. | MR | Zbl
[8] J. Giesselmann and A.E. Tzavaras, Singular limiting induced from continuum solutions and the problem of dynamic cavitation. (submitted), (2013), . | arXiv
[9] A. Miroshnikov and A.E. Tzavaras, A variational approximation scheme for polyconvex elastodynamics that preserves the positivity of Jacobians. Comm. Math. Sciences 10 (2012), 87-115. | MR
[10] A. Miroshnikov and A.E. Tzavaras, On the construction and properties of weak solutions describing dynamic cavitation. (preprint). | MR
[11] K.A. Pericak-Spector and S.J. Spector, Nonuniqueness for a hyperbolic system: cavitation in nonlinear elastodynamics. Arch. Rational Mech. Anal. 101 (1988), 293 - 317. | MR | Zbl
[12] K.A. Pericak-Spector and S.J. Spector, Dynamic cavitation with shocks in nonlinear elasticity. Proc. Royal Soc. Edinburgh Sect A 127 (1997), 837 - 857. | MR | Zbl
[13] T. Qin, Symmetrizing nonlinear elastodynamic system, J. Elasticity 50 (1998), 245-252. | MR | Zbl
[14] J. Sivaloganathan and S.J. Spector, Myriad radial cavitating equilibria in nonlinear elasticity. SIAM J. Appl. Math. 63 (2003), 1461 - 1473. | MR | Zbl
[15] C. Truesdell, W. Noll, The non-linear field theories of mechanics, Handbuch der Physik III, 3 (Ed. S.Flügge), Springer Verlag, Berlin, 1965. | MR | Zbl
[16] D.H. Wagner, Symmetric hyperbolic equations of motion for a hyper-elastic material, J. Hyper. Differential Equations 6 (2009), 615-630. | MR | Zbl
Cited by Sources: