Cet exposé présente quelques résultats récents obtenus par l’auteur en collaboration avec Olivier Glass, Christophe Lacave, Ayman Moussa, Gabriela Planas et Takéo Takahashi, sur l’analyse théorique de la dynamique de corps solides immergśs dans un fluide incompressible.
@article{SLSEDP_2012-2013____A11_0, author = {Franck Sueur}, title = {Sur la dynamique de corps solides immerg\'es dans un fluide incompressible}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:11}, pages = {1--20}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2012-2013}, doi = {10.5802/slsedp.39}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.39/} }
TY - JOUR AU - Franck Sueur TI - Sur la dynamique de corps solides immergés dans un fluide incompressible JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:11 PY - 2012-2013 SP - 1 EP - 20 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.39/ DO - 10.5802/slsedp.39 LA - fr ID - SLSEDP_2012-2013____A11_0 ER -
%0 Journal Article %A Franck Sueur %T Sur la dynamique de corps solides immergés dans un fluide incompressible %J Séminaire Laurent Schwartz — EDP et applications %Z talk:11 %D 2012-2013 %P 1-20 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.39/ %R 10.5802/slsedp.39 %G fr %F SLSEDP_2012-2013____A11_0
Franck Sueur. Sur la dynamique de corps solides immergés dans un fluide incompressible. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Talk no. 11, 20 p. doi : 10.5802/slsedp.39. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.39/
[1] L. Ambrosio, N. Gigli et G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Second edition. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, 2008. | MR | Zbl
[2] V. I. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16(1), 319-361, 1966. | Numdam | MR | Zbl
[3] W. Braun et K. Hepp. The Vlasov dynamics and its fluctuations in the limit of interacting classical particles. Comm. Math. Phys. 56(2), 101-113, 1977. | MR | Zbl
[4] Y. Brenier. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25(3-4), 737-754, 2000. | MR | Zbl
[5] J.-Y. Chemin. Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel. Invent. Math. 103(3), 599-629, 1991. | MR | Zbl
[6] J.-Y. Chemin. Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace. J. Math. Pures Appl. 71(5), 407-417, 1992. | MR | Zbl
[7] J.-Y. Chemin. Fluides parfaits incompressibles. Astérisque, 230, 1995. | MR | Zbl
[8] S. Childress. An introduction to theoretical fluid mechanics. Courant Lecture Notes in Mathematics, 19. Courant Institute of Mathematical Sciences, New York ; American Mathematical Society, Providence, RI, 2009. | MR
[9] C. Conca, J. A. San Martin et M. Tucsnak. Existence de solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations 25(5-6), 1019-1042, 2000. | MR | Zbl
[10] P. Degond. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in and space dimensions. Ann. Sci. École Norm. Sup. (4), 519-542, 1986. | Numdam | MR | Zbl
[11] J.-M. Delort. Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc. 4(3), 553-586, 1991. | MR | Zbl
[12] B. Desjardins et M. J. Esteban. On weak solutions for fluid-rigid structure interaction : compressible and incompressible models. Comm. Partial Differential Equations 25(7-8), 1399-1413, 2000. | MR | Zbl
[13] R. J. DiPerna et A. J. Majda. Concentrations in regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. 40(3), 301-345, 1987. | MR | Zbl
[14] R. L. Dobrushin. Vlasov equations. Funct. Anal. Appl. 13, 115-123, 1979. | MR | Zbl
[15] E. Feireisl. On the motion of rigid bodies in a viscous incompressible fluid. Dedicated to Philippe Bénilan. J. Evol. Equ. 3(3), 419-441, 2003. | MR | Zbl
[16] E. Feireisl. On the motion of rigid bodies in a viscous fluid. Mathematical theory in fluid mechanics (Paseky, 2001). Appl. Math. 47(6), 463-484, 2002. | MR | Zbl
[17] E. Feireisl. On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167(4), 281-308, 2003. | MR | Zbl
[18] U. Frisch et V. Zheligovsky. A very smooth ride in a rough sea. Preprint 2012, . | arXiv
[19] G. P. Galdi. On the motion of a rigid body in a viscous liquid : a mathematical analysis with applications. Handbook of mathematical fluid dynamics, Vol. I, 653-791, North-Holland, Amsterdam, 2002. | MR | Zbl
[20] P. Gamblin. Système d’Euler incompressible et régularité microlocale analytique. Ann. Inst. Fourier (Grenoble) 44(5), 1449–1475, 1994. | Numdam | MR | Zbl
[21] M. Geissert, K. Götze et M. Hieber, Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. A paraître dans Trans. Amer. Math. Soc. | MR
[22] D. Gérard-Varet et M. Hillairet. Regularity issues in the problem of fluid structure interaction. Arch. Ration. Mech. Anal. 195(2), 375-407, 2010. | MR | Zbl
[23] D. Gérard-Varet et M. Hillairet. Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Preprint 2012, . | arXiv | MR
[24] O. Glass. Exact boundary controllability of 3-D Euler equation. ESAIM Control Optim. Calc. Var. 5, 1-44, 2000. | Numdam | MR | Zbl
[25] O. Glass et T. Horsin. Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patch. J. Math. Pures Appl. 93(1), 61-90, 2010. | MR | Zbl
[26] O. Glass et T. Horsin. Prescribing the motion of a set of particles in a 3D perfect fluid. SIAM J. on Control and Optimization 50(5), 2726-2742, 2012.
[27] O. Glass, C. Lacave et F. Sueur. On the motion of a small body immersed in a two dimensional incompressible perfect fluid. Preprint 2011, . A paraître dans Bulletin de la SMF. | arXiv
[28] O. Glass et F. Sueur. The movement of a solid in an incompressible perfect fluid as a geodesic flow. Proceedings of the AMS. 140(6), 2155-2168, 2012. | MR
[29] O. Glass et F. Sueur. On the motion of a rigid body in a two-dimensional irregular ideal flow. SIAM J. Math. Anal. 44(5), 3101-3126, 2012. | MR
[30] O. Glass et F. Sueur. Uniqueness results for weak solutions of two-dimensional fluid-solid systems. Preprint 2012, . | arXiv
[31] O. Glass et F. Sueur. Low regularity solutions for the two-dimensional “rigid body + incompressible Euler" system. Preprint 2012, . | HAL | MR
[32] O. Glass, F. Sueur et T. Takahashi. Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid. Ann. Sci. École Norm. Sup. Volume 45(1), 1-51, 2012. | Numdam | MR
[33] F. Golse et L. Saint-Raymond. The Vlasov-Poisson system with strong magnetic field. J. Math. Pures Appl. 78(8), 791-817, 1999. | MR | Zbl
[34] C. Grotta Ragazzo, J. Koiller et W. M. Oliva. On the motion of two-dimensional vortices with mass. Nonlinear Sci., 4(5), 375-418, 1994. | MR | Zbl
[35] N. M. Günther. Über ein Hauptproblem der Hydrodynamik. (German) Math. Z. 24(1), 448-499, 1926. | MR
[36] M. Gunzburger, H.-C. Lee et G. A. Seregin. Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2(3), 219–266, 2000. | MR | Zbl
[37] M. Hauray et P. E. Jabin. -particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183(3), 489-524, 2007. | MR | Zbl
[38] T. I. Hesla, Collisions of Smooth Bodies in Viscous Fluids : A Mathematical Investigation. PhD thesis, University of Minnesota, revised version. 2005.
[39] M. Hillairet. Lack of collision between solid bodies in a 2D incompressible viscous flow. Comm. Partial Differential Equations 32(7-9), 1345-1371, 2007. | MR | Zbl
[40] K.-H. Hoffmann et V. N. Starovoitov. On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9(2), 633-648, 1999 | MR | Zbl
[41] J.-G. Houot, J. San Martin et M. Tucsnak. Existence and uniqueness of solutions for the equations modelling the motion of rigid bodies in a perfect fluid. J. Funct. Anal. 259(11), 2856-2885, 2010. | MR | Zbl
[42] A. Inoue et M. Wakimoto. On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(2), 303–319, 1977. | MR | Zbl
[43] N. V. Judakov. The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid (in Russian). Dinamika Splošn. Sredy 18, 249-253, 1974. | MR
[44] T. Kato. On the smoothness of trajectories in incompressible perfect fluids. In Nonlinear wave equations (Providence, RI, 1998), volume 263 of Contemp. Math., 109–130. Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
[45] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193-248, 1933. | MR
[46] J. Leray. Étude de diverses équations intégrales non linéaires et de quelques problèmes de l’hydrodynamique. J. Maths Pures Appl. 12, 1-82, 1933. | Zbl
[47] L. Lichtenstein. Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze. (German) Math. Z. 23(1), 89-154, 1925. | MR
[48] L. Lichtenstein. Über einige Existenzprobleme der Hydrodynamik. (German) Math. Z. 32(1), 608-640, 1930. | MR
[49] P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications 3, 1996. | MR | Zbl
[50] G. Loeper. Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86(1), 68-79, 2006. | MR | Zbl
[51] C. Marchioro et M. Pulvirenti. Mathematical theory of incompressible nonviscous fluids. Applied Mathematical Sciences 96, Springer-Verlag, 1994. | MR | Zbl
[52] A. Moussa et F. Sueur. A 2d spray model with gyroscopic effects. Asymptotic Analysis. 81(1), 53-91, 2013.
[53] H. Neunzert. The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles. Trans. Fluid Dynamics 18, 663-678, 1977.
[54] J. H. Ortega, L. Rosier et T. Takahashi. Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid. M2AN Math. Model. Numer. Anal. 39(1), 79-108, 2005. | Numdam | MR | Zbl
[55] J. H. Ortega, L. Rosier et T. Takahashi. On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(1), 139-165, 2007. | Numdam | MR | Zbl
[56] G. Planas et F. Sueur. On the “viscous incompressible fluid + rigid body” system with Navier conditions A paraître aux Ann. Inst. H. Poincaré Anal. Non Linéaire.
[57] C. Rosier et L. Rosier. Smooth solutions for the motion of a ball in an incompressible perfect fluid, Journal of Functional Analysis 256(5), 1618-1641, 2009. | MR | Zbl
[58] J. A. San Martin, V. Starovoitov et M. Tucsnak. Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161(2), 113-147, 2002. | MR | Zbl
[59] P. Serfati. Équation d’Euler et holomorphies à faible régularité spatiale. C. R. Acad. Sci. Paris Sér. I Math. 320(2), 175-180, 1995. | MR | Zbl
[60] P. Serfati. Solutions en temps, - Lipschitz bornées en espace et équation d’Euler. C. R. Acad. Sci. Paris Sér. I Math., 320(5), 555-558, 1995. | MR | Zbl
[61] P. Serfati. Structures holomorphes à faible régularité spatiale en mécanique des fluides. J. Math. Pures Appl. 74(2), 95-104, 1995. | MR | Zbl
[62] D. Serre. Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4(1), 99-110, 1987. | MR | Zbl
[63] A. Shnirelman. On the analyticity of particles trajectories in the ideal incompressible fluid. Global and stochastic analysis 2(1), 2012.
[64] V. N. Starovoitov. Nonuniqueness of a solution to the problem on motion of a rigid body in a viscous incompressible fluid. J. Math. Sci. 130(4), 4893–4898, 2005. | MR | Zbl
[65] F. Sueur. On the motion of a rigid body in a two-dimensional ideal flow with vortex sheet initial data. A paraître aux Ann. Inst. H. Poincaré Anal. Non Linéaire. | DOI
[66] F. Sueur. Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain. J. of Differential Equations 251(12), 3421-3449, 2011. | MR | Zbl
[67] F. Sueur. A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body. Comm. in Math. Physics 316(3), 783-808, 2012. kato3d3 | MR
[68] T. Takahashi. Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8(12), 1499-1532, 2003. | MR | Zbl
[69] C. Villani. Optimal transport, old and new. Fundamental Principles of Mathematical Sciences 338, Springer-Verlag. | MR | Zbl
[70] Y. Wang et A. Zang. Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid. J. Differential Equations, 252, 4259-4288, 2012. | MR | Zbl
[71] W. Wolibner. Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37(1), 698-726, 1933. | MR | Zbl
[72] V. I. Yudovich. Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3, 1032-1066, 1963. | MR | Zbl
Cited by Sources: