Significant information about the topology of a bounded domain of a Riemannian manifold is encoded into the properties of the distance, , from the boundary of . We discuss recent results showing the invariance of the singular set of the distance function with respect to the generalized gradient flow of , as well as applications to homotopy equivalence.
@article{SLSEDP_2012-2013____A9_0, author = {Piermarco Cannarsa}, title = {Generalized gradient flow and singularities of the {Riemannian} distance function}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:9}, pages = {1--16}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2012-2013}, doi = {10.5802/slsedp.37}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.37/} }
TY - JOUR AU - Piermarco Cannarsa TI - Generalized gradient flow and singularities of the Riemannian distance function JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:9 PY - 2012-2013 SP - 1 EP - 16 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.37/ DO - 10.5802/slsedp.37 LA - en ID - SLSEDP_2012-2013____A9_0 ER -
%0 Journal Article %A Piermarco Cannarsa %T Generalized gradient flow and singularities of the Riemannian distance function %J Séminaire Laurent Schwartz — EDP et applications %Z talk:9 %D 2012-2013 %P 1-16 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.37/ %R 10.5802/slsedp.37 %G en %F SLSEDP_2012-2013____A9_0
Piermarco Cannarsa. Generalized gradient flow and singularities of the Riemannian distance function. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Talk no. 9, 16 p. doi : 10.5802/slsedp.37. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.37/
[1] P. Albano, P. Cannarsa, Structural properties of singularities of semiconcave functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 719–740. | Numdam | MR | Zbl
[2] P. Albano, P. Cannarsa, Propagation of singularities for solutions of nonlinear first order partial differential equations, Arch. Ration. Mech. Anal. 162 (2002), 1–23. | MR | Zbl
[3] P. Albano, P. Cannarsa, Khai T. Nguyen, C. Sinestrari, Singular gradient flow of the distance function and homotopy equivalence, Math. Ann. 356 (2013), 23–43. | MR | Zbl
[4] G. Alberti, L. Ambrosio, P. Cannarsa, On the singularities of convex functions, Manuscripta Math. 76 (1992), 421–435. | MR | Zbl
[5] D. Attali, J.-D. Boissonnat, H. Edelsbrunner, Stability and computation of medial axes—a state-of-the-art report, in Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration (G. Farin, H.-C. Hege, D. Hoffman, C.R. Johnson, K. Polthier eds.), 109–125, Springer, Berlin (2009). | MR | Zbl
[6] P. Cannarsa, C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Birkhäuser, Boston (2004). | MR | Zbl
[7] P. Cannarsa,Y. Yu, Singular dynamics for semiconcave functions, J. Eur. Math. Soc. (JEMS) 11 (2009), 999–1024. | MR | Zbl
[8] M.G. Crandall, L.C. Evans, P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487–502. | MR | Zbl
[9] C. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. J. 26 (1977), 1097–1119. | MR | Zbl
[10] M. Do Carmo, Riemannian geometry, Birkhäuser, Boston (1992). | MR | Zbl
[11] A.Lieutier, Any open bounded subset of has the same homotopy type as its medial axis, Comput. Aided Design 36 (2004), 1029–1046.
[12] P. Petersen, Riemannian geometry, Springer, New York (2006). | MR | Zbl
[13] C. Villani, Optimal transport, old and new. Springer, Berlin - Heidelberg (2009). | MR | Zbl
[14] Y. Yu, A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), 439–444. | Numdam | MR | Zbl
Cited by Sources: