Nous étudions le spectre du Hamiltonien d’un gaz de bosons, à la limite d’un grand nombre de particules et dans le régime de champ moyen (l’interaction est multipliée par ). Le premier terme du développement est donné par le modèle non linéaire de Hartree, alors que le second terme est donné par la théorie de Bogoliubov.
@article{SLSEDP_2012-2013____A3_0, author = {Mathieu Lewin}, title = {Gaz de bosons dans le r\'egime de champ moyen~: les th\'eories de {Hartree} et {Bogoliubov}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:3}, pages = {1--22}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2012-2013}, doi = {10.5802/slsedp.33}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.33/} }
TY - JOUR AU - Mathieu Lewin TI - Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:3 PY - 2012-2013 SP - 1 EP - 22 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.33/ DO - 10.5802/slsedp.33 LA - fr ID - SLSEDP_2012-2013____A3_0 ER -
%0 Journal Article %A Mathieu Lewin %T Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov %J Séminaire Laurent Schwartz — EDP et applications %Z talk:3 %D 2012-2013 %P 1-22 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.33/ %R 10.5802/slsedp.33 %G fr %F SLSEDP_2012-2013____A3_0
Mathieu Lewin. Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Talk no. 3, 22 p. doi : 10.5802/slsedp.33. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.33/
[1] Z. Ammari and F. Nier, Mean field limit for bosons and infinite dimensional phase-space analysis, Annales Henri Poincaré, 9 (2008), pp. 1503–1574. | DOI | MR | Zbl
[2] Z. Ammari and F. Nier, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., 95 (2011), pp. 585–626. | MR | Zbl
[3] V. Bach, Ionization energies of bosonic Coulomb systems, Lett. Math. Phys., 21 (1991), pp. 139–149. | MR | Zbl
[4] V. Bach, R. Lewis, E. H. Lieb, and H. Siedentop, On the number of bound states of a bosonic -particle Coulomb system, Math. Z., 214 (1993), pp. 441–459. | MR | Zbl
[5] B. Baumgartner, On Thomas-Fermi-von Weizsäcker and Hartree energies as functions of the degree of ionisation, J. Phys. A, 17 (1984), pp. 1593–1601. | MR | Zbl
[6] G. Ben Arous, K. Kirkpatrick, and B. Schlein, A Central Limit Theorem in Many-Body Quantum Dynamics, , (2011). | arXiv
[7] R. Benguria and E. H. Lieb, Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Physical Review Letters, 50 (1983), pp. 1771–1774.
[8] F. Berezin, The method of second quantization, Pure and applied physics. A series of monographs and textbooks, Academic Press, 1966. | MR | Zbl
[9] N. N. Bogoliubov, About the theory of superfluidity, Izv. Akad. Nauk SSSR, 11 (1947), p. 77. | MR
[10] F. Calogero, Solution of the one-dimensional -body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 12 (1971), pp. 419–436. | MR | Zbl
[11] F. Calogero and C. Marchioro, Lower bounds to the ground-state energy of systems containing identical particles, J. Mathematical Phys., 10 (1969), pp. 562–569. | MR
[12] H. D. Cornean, J. Derezinski, and P. Zin, On the infimum of the energy-momentum spectrum of a homogeneous bose gas, J. Math. Phys., 50 (2009), p. 062103. | MR | Zbl
[13] B. De Finetti, Funzione caratteristica di un fenomeno aleatorio. Atti della R. Accademia Nazionale dei Lincei, 1931. Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali.
[14] P. Diaconis and D. Freedman, Finite exchangeable sequences, Ann. Probab., 8 (1980), pp. 745–764. | MR | Zbl
[15] L. Erdös, B. Schlein, and H.-T. Yau, Ground-state energy of a low-density Bose gas : A second-order upper bound, Phys. Rev. A, 78 (2008), p. 053627.
[16] J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Commun. Math. Phys., 68 (1979), pp. 45–68. | MR | Zbl
[17] M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., 1 (1960), pp. 516–523. | MR | Zbl
[18] A. Giuliani and R. Seiringer, The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys., 135 (2009), pp. 915–934. | MR | Zbl
[19] P. Grech and R. Seiringer, The excitation spectrum for weakly interacting bosons in a trap, , (2012). | arXiv | MR
[20] M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. I, Commun. Math. Phys., 294 (2010), pp. 273–301. | MR | Zbl
[21] M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. II, Adv. Math., 228 (2011), pp. 1788–1815. | MR
[22] K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974), pp. 265–277. | MR
[23] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80 (1955), pp. 470–501. | MR | Zbl
[24] R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 33 (1975/76), pp. 343–351. | MR | Zbl
[25] L. Landau, Theory of the Superfluidity of Helium II, Phys. Rev., 60 (1941), pp. 356–358. | Zbl
[26] M. Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., 260 (2011), pp. 3535–3595. | MR | Zbl
[27] M. Lewin, P. T. Nam, and N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose gases, preprint , (2013). | arXiv
[28] M. Lewin, P. T. Nam, S. Serfaty, and J. P. Solovej, Bogoliubov spectrum of interacting Bose gases, preprint , (2012). | arXiv
[29] E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2), 130 (1963), pp. 1616–1624. | MR | Zbl
[30] E. H. Lieb, A lower bound for Coulomb energies, Phys. Lett. A, 70 (1979), pp. 444–446. | MR
[31] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2), 130 (1963), pp. 1605–1616. | MR | Zbl
[32] E. H. Lieb and S. Oxford, Improved lower bound on the indirect Coulomb energy, Int. J. Quantum Chem., 19 (1980), pp. 427–439.
[33] E. H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge Univ. Press, 2010. | MR | Zbl
[34] E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkhäuser, 2005. | MR | Zbl
[35] E. H. Lieb and J. P. Solovej, Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., 217 (2001), pp. 127–163. | MR | Zbl
[36] E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas., Commun. Math. Phys., 252 (2004), pp. 485–534. | MR | Zbl
[37] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–149. | Numdam | MR | Zbl
[38] P.-L. Lions, Mean-field games and applications. Lectures at the Collège de France, unpublished, Nov 2007. | Zbl
[39] P. T. Nam, Contributions to the rigorous study of the structure of atoms, PhD thesis, University of Copenhagen, 2011.
[40] O. Penrose and L. Onsager, Bose-Einstein Condensation and Liquid Helium, Phys. Rev., 104 (1956), pp. 576–584. | Zbl
[41] D. Petz, G. A. Raggio, and A. Verbeure, Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys., 121 (1989), pp. 271–282. | MR | Zbl
[42] G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta, 62 (1989), pp. 980–1003. | MR | Zbl
[43] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. | MR | Zbl
[44] E. Sandier and S. Serfaty, 2D Coulomb Gases and the Renormalized Energy, , (2012). | arXiv
[45] E. Sandier and S. Serfaty, From the Ginzburg-Landau model to vortex lattice problems, Commun. Math. Phys., 313 (2012), pp. 635–743. | MR | Zbl
[46] R. Seiringer, The excitation spectrum for weakly interacting bosons, Commun. Math. Phys., 306 (2011), pp. 565–578. | MR | Zbl
[47] J. P. Solovej, Asymptotics for bosonic atoms, Lett. Math. Phys., 20 (1990), pp. 165–172. | MR | Zbl
[48] J. P. Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys., 266 (2006), pp. 797–818. | MR | Zbl
[49] J. P. Solovej, Many body quantum mechanics. LMU, 2007. Lecture notes.
[50] E. Størmer, Symmetric states of infinite tensor products of -algebras, J. Functional Analysis, 3 (1969), pp. 48–68. | MR | Zbl
[51] B. Sutherland, Quantum Many-Body Problem in One Dimension : Ground State, J. Mathematical Phys., 12 (1971), pp. 246–250.
[52] B. Sutherland, Quantum Many-Body Problem in One Dimension : Thermodynamics, J. Mathematical Phys., 12 (1971), pp. 251–256.
[53] A. Sütő, Thermodynamic limit and proof of condensation for trapped bosons, J. Statist. Phys., 112 (2003), pp. 375–396. | MR | Zbl
[54] R. F. Werner, Large deviations and mean-field quantum systems, in Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, pp. 349–381. | MR | Zbl
[55] T. T. Wu, Bose-Einstein condensation in an external potential at zero temperature : General theory, Phys. Rev. A, 58 (1998), pp. 1465–1474.
[56] H.-T. Yau and J. Yin, The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys., 136 (2009), pp. 453–503. | MR | Zbl
[57] J. Yngvason, The interacting Bose gas : A continuing challenge, Phys. Particles Nuclei, 41 (2010), pp. 880–884.
Cited by Sources: