The aim of these notes is to provide an overview of the ideas in the recent proof of global well-posedness for the massive Maxwell-Dirac system in the Lorenz gauge in , for small and decaying initial data of limiting regularity. The result also includes an in-depth study of the asymptotic dynamics of the global solutions, which can be described as modified scattering. While heuristically we exploit the close connection between the massive Maxwell-Dirac and the wave-Klein-Gordon equations, for the proof of the results we develop a novel approach which applies directly at the level of the Dirac equations. The modified scattering result follows from a precise description of the asymptotic behavior of the solutions inside the light cone, which is derived via the method of testing with wave packets of Ifrim-Tataru.
Sebastian Herr 1 ; Mihaela Ifrim 2 ; Martin Spitz 1
@article{SLSEDP_2024-2025____A9_0,
author = {Sebastian Herr and Mihaela Ifrim and Martin Spitz},
title = {Global dynamics for the {3D} {Maxwell-Dirac} system},
journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
note = {talk:20},
pages = {1--21},
year = {2024-2025},
publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
doi = {10.5802/slsedp.182},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.182/}
}
TY - JOUR AU - Sebastian Herr AU - Mihaela Ifrim AU - Martin Spitz TI - Global dynamics for the 3D Maxwell-Dirac system JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:20 PY - 2024-2025 SP - 1 EP - 21 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.182/ DO - 10.5802/slsedp.182 LA - en ID - SLSEDP_2024-2025____A9_0 ER -
%0 Journal Article %A Sebastian Herr %A Mihaela Ifrim %A Martin Spitz %T Global dynamics for the 3D Maxwell-Dirac system %J Séminaire Laurent Schwartz — EDP et applications %Z talk:20 %D 2024-2025 %P 1-21 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.182/ %R 10.5802/slsedp.182 %G en %F SLSEDP_2024-2025____A9_0
Sebastian Herr; Mihaela Ifrim; Martin Spitz. Global dynamics for the 3D Maxwell-Dirac system. Séminaire Laurent Schwartz — EDP et applications (2024-2025), Exposé no. 20, 21 p.. doi: 10.5802/slsedp.182
[1] P. Bechouche, N. J. Mauser, and S. Selberg. On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit. J. Hyperbolic Differ. Equ., 2(1):129–182, 2005. | Zbl | DOI | MR
[2] I. Bejenaru and S. Herr. The cubic Dirac equation: small initial data in . Comm. Math. Phys., 335(1):43–82, 2015. | Zbl | DOI | MR
[3] I. Bejenaru and S. Herr. The cubic Dirac equation: small initial data in . Comm. Math. Phys., 343(2):515–562, 2016. | MR | Zbl | DOI
[4] I. Bejenaru and S. Herr. On global well-posedness and scattering for the massive Dirac-Klein-Gordon system. J. Eur. Math. Soc. (JEMS), 19(8):2445–2467, 2017. | DOI | Zbl | MR
[5] N. Bournaveas. Local existence for the Maxwell-Dirac equations in three space dimensions. Comm. Partial Differential Equations, 21(5-6):693–720, 1996. | Zbl | DOI | MR
[6] N. Bournaveas and T. Candy. Global well-posedness for the massless cubic Dirac equation. Int. Math. Res. Not. IMRN, (22):6735–6828, 2016. | MR | Zbl
[7] Y. Cho, S. Kwon, K. Lee, and C. Yang. The modified scattering for Dirac equations of scattering-critical nonlinearity, 2022. | arXiv
[8] C. C. Cloos. On the long-time behavior of the three-dimensional Dirac-Maxwell equation with zero magnetic field. PhD thesis, Universität Bielefeld, 2020. URL: http://nbn-resolving.de/urn:nbn:de:0070-pub-29493984.
[9] P. D Ancona, D. Foschi, and S. Selberg. Null structure and almost optimal local well-posedness of the Maxwell-Dirac system. Amer. J. Math., 132(3):771–839, 2010. | Zbl | MR | DOI
[10] P. D’Ancona, D. Foschi, and S. Selberg. Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system. J. Eur. Math. Soc. (JEMS), 009(4):877–899, 2007. | MR | Zbl | DOI
[11] P. D’Ancona and S. Selberg. Global well-posedness of the Maxwell-Dirac system in two space dimensions. J. Funct. Anal., 260(8):2300–2365, 2011. | Zbl | MR | DOI
[12] M. J. Esteban, V. Georgiev, and E. Séré. Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. Partial Differ. Equ., 4(3):265–281, 1996. | MR | Zbl | DOI
[13] M. Flato, J. C. H. Simon, and E. Taflin. Asymptotic completeness, global existence and the infrared problem for the Maxwell-Dirac equations. Mem. Amer. Math. Soc., 127(606):x+311, 1997. | MR | Zbl | DOI
[14] C. Gavrus and S.-J. Oh. Global well-posedness of high dimensional Maxwell-Dirac for small critical data. Mem. Amer. Math. Soc., 264(1279):v+94, 2020. | Zbl | DOI | MR
[15] V. Georgiev. Small amplitude solutions of the Maxwell-Dirac equations. Indiana Univ. Math. J., 40(3):845–883, 1991. | MR | Zbl | DOI
[16] L. Gross. The Cauchy problem for the coupled Maxwell and Dirac equations. Comm. Pure Appl. Math., 19:1–15, 1966. | Zbl | MR | DOI
[17] S. Herr, M. Ifrim, and M. Spitz. Modified scattering for the three dimensional Maxwell-Dirac system, 2024. | arXiv
[18] M. Ifrim and A. Stingo. Almost global well-posedness for quasilinear strongly coupled Wave-Klein-Gordon systems in two space dimensions, 2019. | arXiv
[19] M. Ifrim and D. Tataru. Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension. Nonlinearity, 28(8):2661–2675, 2015. | DOI | MR | Zbl
[20] M. Ifrim and D. Tataru. Two dimensional water waves in holomorphic coordinates II: Global solutions. Bull. Soc. Math. France, 144(2):369–394, 2016. | MR | Zbl | DOI
[21] M. Ifrim and D. Tataru. The lifespan of small data solutions in two dimensional capillary water waves. Arch. Ration. Mech. Anal., 225(3):1279–1346, 2017. | MR | Zbl | DOI
[22] M. Ifrim and D. Tataru. Testing by wave packets and modified scattering in nonlinear dispersive PDE’s. Trans. Amer. Math. Soc. Ser. B, 11:164–214, 2024. | MR | Zbl | DOI
[23] S. Klainerman and M. Machedon. On the Maxwell-Klein-Gordon equation with finite energy. Duke Math. J., 74(1):19–44, 1994. | DOI | Zbl | MR
[24] J. Krieger and J. Lührmann. Concentration compactness for the critical Maxwell-Klein-Gordon equation. Ann. PDE, 1(1):Art. 5, 208, 2015. | MR | Zbl | DOI
[25] J. Krieger, J. Sterbenz, and D. Tataru. Global well-posedness for the Maxwell-Klein-Gordon equation in dimensions: small energy. Duke Math. J., 164(6):973–1040, 2015. | MR | Zbl | DOI
[26] K. Lee. Scattering results for the (1+4) dimensional massive Maxwell-Dirac system under Lorenz gauge condition, 2023. | arXiv
[27] N. Masmoudi and K. Nakanishi. Nonrelativistic limit from Maxwell-Klein-Gordon and Maxwell-Dirac to Poisson-Schrödinger. Int. Math. Res. Not., (13):697–734, 2003. | MR | Zbl
[28] N. Masmoudi and K. Nakanishi. Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations. Commun. Math. Phys., 243(1):123–136, 2003. | DOI | Zbl | MR
[29] N. Masmoudi and K. Nakanishi. Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations. Comm. Math. Phys., 243(1):123–136, 2003. | Zbl | MR | DOI
[30] J. Metcalfe, D. Tataru, and M. Tohaneanu. Price’s law on nonstationary space–times. Adv. Math., 230(3):995–1028, 2012. | MR | Zbl | DOI
[31] S.-J. Oh and D. Tataru. Global well-posedness and scattering of the -dimensional Maxwell-Klein-Gordon equation. Invent. Math., 205(3):781–877, 2016. | MR | Zbl | DOI
[32] S.-J. Oh and D. Tataru. Local well-posedness of the -dimensional Maxwell-Klein-Gordon equation at energy regularity. Ann. PDE, 2(1):Art. 2, 70, 2016. | Zbl | DOI | MR
[33] S.-J. Oh and D. Tataru. Energy dispersed solutions for the -dimensional Maxwell-Klein-Gordon equation. Amer. J. Math., 140(1):1–82, 2018. | Zbl | DOI | MR
[34] M. Psarelli. Maxwell-Dirac equations in four-dimensional Minkowski space. Comm. Partial Differential Equations, 30(1-3):97–119, 2005. | DOI | Zbl | MR
[35] F. Pusateri. Modified scattering for the boson star equation. Commun. Math. Phys., 332(3):1203–1234, 2014. | Zbl | DOI | MR
Cité par Sources :

