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GLOBAL DYNAMICS FOR THE 3D MAXWELL-DIRAC SYSTEM
SEBASTIAN HERR, MIHAELA IFRIM, AND MARTIN SPITZ

ABSTRACT. The aim of these notes is to provide an overview of the ideas in the recent
proof of global well-posedness for the massive Maxwell-Dirac system in the Lorenz gauge in
RT3, for small and decaying initial data of limiting regularity. The result also includes an
in-depth study of the asymptotic dynamics of the global solutions, which can be described
as modified scattering. While heuristically we exploit the close connection between the
massive Maxwell-Dirac and the wave-Klein-Gordon equations, for the proof of the results
we develop a novel approach which applies directly at the level of the Dirac equations. The
modified scattering result follows from a precise description of the asymptotic behavior of
the solutions inside the light cone, which is derived via the method of testing with wave
packets of Ifrim-Tataru.
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1. INTRODUCTION AND MAIN RESULTS

We consider the Cauchy problem for the Maxwell-Dirac system on Minkowski space RT3,
In the Lorenz gauge, the system reads

—1 V“@ﬂﬁ +1 = V“A;ﬂb?
(1.1) OA, = =y,
oA, = 0.
This model, fundamental in relativistic field theory, describes the interaction of a spinor

(electron) with its self-induced electromagnetic field. Our focus is on the long-time dynamics
of solutions arising from initial data prescribed at time ¢t = 0,

(1'2> 1/}<07 I) = 1/}()(1;)’ A#(Ov I) - CL#(JI), atA#(Oa I) - C'L#(J}).

The unknowns in the system (1.1) are the spinor field ¢» = (¢, x), which takes values
in C*, and the real-valued electromagnetic potentials A, (¢, z), with u € {0,1,2,3}. Without
loss of generality, we normalize the mass in the Dirac equation to be equal to 1.

2020 Mathematics Subject Classification. 81R20, 35Q61, 35Q41.

Key words and phrases. Global well-posedness, modified scattering, Dirac-Maxwell system, vector fields,
wave packets.
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The main results of the authors’ paper [17] address two fundamental questions: (i) the
global existence of solutions for small initial data subject to mild regularity and spatial decay
assumptions, and (ii) a precise asymptotic description of those solutions. A closer analysis of
the large-time behavior reveals a modified scattering phenomenon. Specifically, we show that
inside the light cone:

(i) A decays at the rate t~!, and
(ii) ¢ decays at the dispersive rate t=/2, but with an additional logarithmic phase
correction.

In comparison with earlier results, our work in [17] advance our understanding of this
problem in several substantive ways:

e Although the system under consideration is semilinear in structure, the asymptotic
analysis of its solutions reveals a modified scattering behavior that reflects a stronger
and more intricate coupling between the Dirac and Maxwell components than one
might anticipate from a superficial examination of the nonlinearity.

e To a large extent our estimates are Lorentz invariant, which reflects the full Lorentz
symmetry of the Maxwell-Dirac system in the Lorenz gauge, and is a consequence of
having derived the Lorentz vector fields that commute with the linear component of
our system (1.1).

e We make no assumptions on the support of the initial data. Furthermore, we make
very mild decay assumptions on the initial data at infinity. In particular, we use only
three Lorentz vector fields in the analysis, which is close to optimal and significantly
below anything that has been done before for this model.

e Rather than using arbitrarily high regularity, here we work with very limited regularity
for the initial data, e.g. our three vector fields bound is simply in the energy space.

e In terms of methods, our work employs a combination of energy estimates localized to
dyadic space-time regions, and pointwise interpolation type estimates within the same
regions. This is akin to ideas previously used by Metcalfe-Tataru-Tohaneanu [30] in
a linear setting, and then later refined to apply to a quasilinear setting in the work
of Ifrim-Stingo [18].

e The asymptotic description of the spinor field v is obtained via the wave—packet
testing method of Ifrim-Tataru [19-22], together with a new family of projections
introduced here at the level of the Dirac equation. This uncovering of the intrinsic
Dirac structure is, to our knowledge, the first of its kind and should not be confounded
with the projectors employed in the work of D’Ancona et al [9]. Our analysis does
not rely on a reduction to the Klein-Gordon framework; indeed, we deliberately
avoid such a reduction because it is inefficient from the standpoint of regularity.
The new projections are precisely what allow us to work at lower regularity while
controlling the dynamics with a minimal number of Lorentz vector fields. In this
sense, the present result is among the few in the literature that both lowers regularity
thresholds for a wave-like model and carefully optimizes the use of vector fields.

e We identify an asymptotic system for 1) and A inside the light cone, which has a
very clean expression in hyperbolic coordinates.

1.1. Previous work. A brief survey of previous results on the massive Maxwell-Dirac system
and related equations is in order. We would like to include a more exhaustive list of works
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in order to create a context of ideas and results that have emerged in this line of research,
including higher-dimensional settings, as well as works that address related models such as
the massless Maxwell-Dirac system and the Maxwell-Klein—Gordon system.

We start with a brief survey of previous results on (1.1) and related equations, namely the
early work on local well-posedness of (1.1) on R by Gross [16] and Bournaveas [5], followed
by the more recent work of D’Ancona—Foschi-Selberg [9], who established local well-posedness
of (1.1) on R'*? in the Lorenz gauge 9*A,, = 0 for data 1(0) € H®, A,[0] € HY/*t x H~1/2+<,
which is almost optimal. Critical for their approach is their discovery of a deep system
null structure of (1.1) in the Lorenz gauge. We also mention the work on uniqueness by
Masmoudi-Nakanishi [28]. In more recent work, Gavrus and Oh [14] obtained global well-
posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on R (d > 4)
for data with small scale-critical Sobolev norm, as well as modified scattering of solutions.
In [26], Lee obtained linear scattering for solutions of (1.1) on R*4.

In terms of global well-posedness, D’Ancona—Selberg [11] obtained a global result for
(1.1) on R'*2 and proved global well-posedness in the charge class. Regarding work in R'*3
for (1.1), we also mention results by Georgiev [15], Flato-Simon-Taflin [13], and Psarelli [34]
on global well-posedness for small, smooth, and localized data, as well as the works [1,29]
on the nonrelativistic limit and [27] on unconditional uniqueness at regularity v € C,H/2,
(A,0,A) € Cy(H' x L?) in the Coulomb gauge. Simplified versions of (1.1) were studied
in [7,8,35]. Stationary solutions were constructed by Esteban-Georgiev—Séré [12].

The next two paragraphs discuss related models that have played a crucial role in the ideas
that emerged in the study of the Maxwell-Dirac system. For example, a scalar counterpart
of (1.1) is the Mazwell-Klein—Gordon equations (MKG). In Klainerman-Machedon [23], global
well-posedness in the Coulomb and temporal gauges in d = 3 was proved. More recent work on
these models includes local well-posedness results for (MKG) by Krieger—Sterbenz—Tataru [25],
and, in the energy-critical case d = 4, global well-posedness for arbitrary finite-energy data
was established by Oh and Tataru [31-33], and independently by Krieger—Lithrmann [24].

Another model that contributed to the circle of ideas later circulating in this research
direction is the Dirac—Klein—Gordon system. Recent work includes D’Ancona—Foschi [10],
as well as the more recent result of Bejenaru and Herr [4], where, under a nonresonant
condition on the masses, they proved global well-posedness and scattering for the massive
Dirac—Klein—Gordon system with small initial data of subcritical regularity in d = 3.

Work on Dirac equations was also influential for results on the Maxwell-Dirac system.
Notable recent results include optimal small-data global well-posedness for the cubic Dirac
equation in R'2 and R by Bejenaru—Herr [2,3] (massive case) and Bournaveas—Candy [6]
(massless case). The references in this paragraph make use of a feature that the Dirac equation
possesses, namely a spinorial null structure.

Our work in [17] differs significantly from previous approaches in that it does not rely on a
spinorial null structure, which has traditionally been developed to relate the Dirac equation
to Klein-Gordon models and has been exploited in scattering results for Maxwell-Dirac
equations. Instead, we work directly at the level of the Dirac equation to uncover the
modified scattering behavior. In doing so, we reveal a new structural property of the Dirac
equation that is better suited to global dynamical analysis, and in particular for deriving the
asymptotic equation for the spinor field .
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Recent work of the second author with Tataru on modified scattering for a series of relevant
models [19,20,22] played a crucial role in the novel approach we present here. A comprehensive
expository account of recent developments on modified scattering is due to the second author
and Tataru; see [22]. A second important reference that informs the energy and pointwise
estimates we perform in [17] is the work of the second author with Stingo [18] on almost
global existence for wave-Klein—Gordon systems.

1.2. The Maxwell-Dirac system. We consider the Maxwell-Dirac system on the Minkowski
space-time R!'*? for space dimension d = 3. The space-time coordinates are denoted by z®
with a = 0,3 and ¢t = 2°, and the Minkowski metric and its inverse are

(gap) = diag(—1,1,1,1), (¢9*%) := diag(—1,1,1,1),

with standard conventions for raising and lowering indices.

The Dirac equation is described using the “gamma matrices”, which are 4 x4 complex-valued
matrices v* with p ranging from 0 to 3,

I, O , 0 o’
0._ 2 J . .
P (5 ) (D)

with the Pauli matrices given by

1. (0 1 9. (0 —1 3. (1 0
O R N (N

and satisfying the anti-commutation relations

(1.3 (y'9" +7"9%) = 20" L,
where I, is the 4 x 4 identity matrix; if no confusion is created, a handy short hand notation
we will be using is Iy =: L.

Given a vector valued function (spinor field) ¢ on R that takes values in C*, on which ~*
acts as multiplication, we define the following conjugation operation

(1.4) P =1y,
where ¥ is the Hermitian adjoint of v». The same conjugation relation defined for vectors in
equation (1.4) extends to general 4 x 4 matrices ~y

(1.5) 7 ="
In particular for the matrices ¥ above one easily verifies that
(1.6) Y =9,

A spinor field 1 is a function on R'™ or on any open subset of R!*3 that takes values
in C*. Given a real-valued 1-form A, (connection 1-form), we introduce the gauge covariant
derivative on spinors

D,y == 0, + 1A,

and the associated curvature 2-form
F. :=0,A, —0,A, = (dA),..

The Maxwell-Dirac equations describe the relativistic quantum electrodynamics of par-
ticles within self-consistent generated and external electromagnetic fields. The relativistic
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Lagrangian field describing the interaction between a connection 1-form A,, representing
an electromagnetic potential, and a spinor field 1), modeling a charged fermionic field is a
space-time integral that takes the form

1
St = [[[ | =B+ D) = (0,0) dede

Here (1, 9?) := (?)T)! is the usual inner product on C* The Euler-Lagrange equations
for [A,, ] take the form

7 {3”1% = — (1, y"7")

' Dyp = 2"

We will refer to (1.7) as the Mazwell-Dirac equations.

A key feature of (1.7) is its invariance under gauge transformations meaning that given any
solution (A, 1)) of (1.7) and a real-valued function y, called gauge transformation, on I x R3,
the gauge transform (A, 1) = (A — dy, eXt) of (A,1) is also a solution to (1.7). This in
fact says that relative to this gauge transform we should think of a solution as being an
equivalence class of functions that are solutions to our problem.

In order to address the well-posedness theory we need to remove the ambiguity arising
from this invariance, for our system (1.7), and fix the gauge. Traditionally there are several
gauges that have been used to address this issue. This includes for instance the Coulomb
gauge 0;A; = 0, which leads to a mix of hyperbolic and elliptic equations. Another possible
gauge choice is the temporal gauge Ay = 0, which retains causality but loses some ellipticity.

In this work we impose the Lorenz gauge condition, which reads

(1.8) A, =0,

and has the advantage that it is Lorentz invariant, resulting in a more symmetric form of the
equations (nonlinear wave equations) compared to the other choices discussed above.
When applied to (1.7), the Lorenz gauge leads us to the system

— O+ =yH A
DA,u = —@’Wﬂ
A, = 0.

The main interest here is on the long time dynamics of the Cauchy problem with prescribed
initial data at time t = 0, given by (1.2).

If one considers only the (self-contained) system formed by the first two equations in (1.1),
then the initial data above can be chosen arbitrarily. However, if in addition one also adds the
third equation, then the initial data is required to satisfy the following constraint equations

CLO = 8ja]-
(1.9) . )
Aa/O - a]aj |¢0| )

which are then propagated to later times by the flow generated by the first two equations.
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1.3. Functional spaces. In this section, we introduce the main function spaces we use to
prove our main results. As a guideline we use the scaling of the massless Maxwell-Dirac
system, which is known to be invariant under the scaling (A > 0)

(1.10) (1, A) — AN, AT ), AT AL (AT AT ).

This leads to the critical Sobolev space J#° := L2 x HY2 x H~/2; the first space measures 1
and the remaining spaces measure position and velocity respectively. In terms of interesting
quantities let us state the ones that are available for this model, but emphasize that none of
them will play a role in our analysis:

(i) the charge conservation

(1.11) Jo == [ 10 dz = [l
(ii) the energy
S .
(1.12) Bim [TD500 + T+ 5 VAPdo,

In terms of terminology, our problem is called charge critical, and this is because the charge is
measured in the critical space L2. In d = 4, the critical Sobolev space would change and the
energy will be expressed in terms of these critical Sobolev spaces, leading to the terminology
energy critical Mazwell-Dirac system.

1.4. Main results. To study the small data long time well-posedness problem for the
nonlinear evolution (1.1) one needs to add some decay assumptions for the initial data to the
mix. Before doing so we need to introduce two small pieces of notations:

e we make the convention of using upper-case letters for multi-indices, e.g. 91 =
8;00 e 0;;; and 2! =z - - - x4, where I = (ig, ..., iq), and we write I if ig = 0.
e we also recall the vector fields (denoted here by) Q,z,
Qop = 1a05 — TpT,s, «,B=0,3,
which represent the generators of the Lorentz group.
At this point we are ready to state the first main result in [17], which describes the type of
initial data we are considering, and provides global pointwise bounds for the solutions:

Theorem 1.1. Assume that the initial data (g, a,a) for the system (1.1) satisfies the
smallness and decay conditions

(1.13)
D lFPof ol + [0 oo g2 + 0 0al| je + 200G e < e

3|Jo|+|Ko|<9
as well as the additional low frequency bound
(1.14) || grrse—v + |6 || fr-1/2-0 <&, v > 0.

If € is small enough, then the solution (1, A) is global in time, and satisfies the vector field
bounds

(1.15) Yo 1050l + 19708 A e + (19705 0 AN g1 < et

3|+ K|<9
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as well as the pointwise bounds

€
(t + |2])3/2C=(t — |=[) = (t + [a])
and, in addition, when |z| —t > t'/3,
£
V(o) S ——
[W(t, )] PRI

Remark 1.2. For smooth and localized initial data the existence of a unique global solution
of (1.1) was shown in Theorem 1 in the work of Georgiev [15]. On the other hand the work
in Psarelli in [34] provides a lower regularity global well-posedness result, though working
with compactly supported initial data which is a very restrictive assumption to make. The
same result also includes pointwise decay bounds for the solutions, however no asymptotic
equations are derived. By contrast our result applies at low regularity without using any
support assumptions, and additionally we derive clean asymptotic equations for the solutions;
see Theorem 1.3 below.

We comment here on the decay rates for ¢) and A in the above theorem. Beginning with 1,
we see that we have the standard dispersive decay rate of /2 inside the cone, but a better
decay rate outside. The latter happens simply because of the initial data localization, as
the group velocities for 1) waves lie inside the cone, and approach the cone only in the high
frequency limit. However, because of the t~! size of A there are strong nonlinear interactions
that happen inside the cone which prevent standard scattering and instead remodulate the 1
waves, suggesting there should be a modified scattering asymptotic.

Turning our attention to A, if one were to naively think of the A equation as a linear
homogeneous wave then the bulk of it would be localized near the cone, with better decay
inside, and would have a minimal interaction with ). However, as it turns out, the bulk of A
inside the cone comes from solving the wave equation with a i) dependent quadratic source
term. This is what produces the exact =1 decay rate. However, we do get the expected decay
estimates for VA both outside and inside the cone.

To capture the asymptotic behavior of ¢ and A at infinity, and also understand the coupling
between A and v in time-like directions, one needs to make the above heuristic discussion
rigorous. We do this in the next theorem, which describes the asymptotics profiles for 1 and
A as well as the modified scattering asymptotics.

Theorem 1.3. There exist § > 0 so that, for all solutions (¢, A) for the Mazwell-Dirac
equations as in Theorem 1.1, there exist asymptotic profiles

(1.17) (s ak) € CV2(B(0,1)),
vanishing at the boundary, so that inside the light cone we have the asymptotic expansions
(1.18) Aty x) = (17 = 2®) " Pal, (x/t) + O(e(t) "t — 1)),
respectively
czpak (x/t)

- 2 2 1 O 2—$2 4
(1.19) ¥(t,x) = (17 — 2®)73/* Y " eFVIEwe vz OB 1 8) + O(e ()2t — 1)),
+

where at, is uniquely determined by p= via the elliptic equation
(1.20) (—1— An)al, = =" P
for the hyperbolic Laplacian Ay in the Klein—Beltrami disk model.
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The following comments should help clarify various aspects of this result.

(i)

(i)

(iii)

(iv)

(1.21)

(1.22)

(1.23)

(v)

(vi)

(vii)

(1.24)

(1.25)
(viii)

(1.26)

Modified scattering: the asymptotic expansion for ¢ in (1.19) departs from the
corresponding linear asymptotic due to the logarithmic phase correction. This is in
turn generated by the exact t~! decay rate for A inside the cone, which is also not
consistent with the linear theory.

Gauge invariance: one may certainly remove the logarithmic phase correction in
the ¢ asymptotics with a change of gauge; however, this would merely switch the
logarithmic correction to A.

Hyperbolic geometry: the asymptotic profiles should be best viewed as functions
on the hyperbolic space H, with the Poincaré disk representation via the velocity
coordinate v = x/t € B(0,1).

Profile regularity: the C'/2 bound represents just the simplest common regularity
property for p* and a” , but in effect we prove an expanded set of bounds, which are
best expressed in the hyperbolic setting, where the Lorentz vector fields €2 play the
role of normalized derivatives:

Q=2 ak, (v)] S °(1 = v*)'72,

P2 ()] S e(1 = v?)' 7,

~

11— 0?) 2 20=2 I S e

We refer the reader to the last section of these notes for more details.

Higher regularity: If the initial data for (¢, A) has additional regularity then the
hyperbolic space regularity of (pL,aZ) can be improved, as well as the decay rate for
pL at the boundary of the unit ball. However, there is no improved decay rate for
at ; instead, (1 — v?)~Y2a% will always have a nondegenerate limit at the boundary.
Low frequency assumption: the additional condition (1.14) on the initial data for
A is necessary in order to obtain the expansion (1.18) even if ) = 0. Otherwise, as
v — 0, we correspondingly must have § — 0 in (1.18).

Connection to Klein-Gordon: the Dirac waves are closely related to Klein-Gordon
waves, and this is reflected in the form of the asymptotic expansion for 1. The two
components pZ correspond exactly to the two Klein-Gordon half-waves, as it can
be readily seen by examining the phases of the associated terms in the v expansion.
In a related vein, the ranges of pE (v) are restricted to v dependent but Lorentz
invariant subspaces V.=, see (2.15), which are orthogonal with respect to the (-, )
inner product defined by

W' %) e = — (7" ¢?).
With these notations, the source term in the coupling equation (1.20) takes the
form

T U2 (0 |12).
Charge conservation: this is reflected in the asymptotic profile via the identity

||P;||%2(H) + Hp;OH%2(H) = |lvoll32.
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(ix) The Landau notation in the above theorem means
sup |A(t, ) — (1 — 222 A (/)] S 1
|x|<t

as t — oo and analogously for .
Finally we comment on the low frequency assumption (1.14):

Remark 1.4. The result in Theorem 1.1 also holds without the assumption (1.14) if one is
willing to slightly relax the pointwise bound for A to

€ log 2(t +r) '
t+|z)) (t—r)

One venue to achieve this is to rely on the weaker BMO bound for A; this in turn
would require replacing the L> endpoint with a BMO endpoint in some of the vector field
interpolation Lemmas. Alternatively, one can slightly rebalance the bootstrap bounds for A
and 1, from L™ and L® to L>~ and L%", with appropriate changes in the powers of ¢.
We chose not to pursue either alternative in [17] because on one hand this assumption turns
out to be needed for Theorem 1.3, and on the other hand, it allows for a more streamlined
argument.

RIGEDIPS <

2. PRELIMINARIES AND NOTATIONS

2.1. Notations. The coordinates in R3**! are denoted by z := (20, 2, 2%, 23), and lower the
indices using the Minkowski metric. For indices we have the following traditional convention:
(i) Greek indices range over 0,1, ..., d, (ii) Latin indices over 1, ..., d, (iii) Einstein summation
convention of summing repeated upper and lower indices over these ranges, and (iv) raising
and lowering indices is performed using the Minkowski metric. For the multi-index notation
we use upper-case letters, e.g. 91 = 020 --- 94 and x' = x(™ - -- 24", where I = (i, ..., iq),
and we write I if i = 0.

2.2. Vector fields. To describe the regularity of the solutions we use the vector fields
associated to the symmetries of the Minkowski space-time. Precisely, the rotation vector
fields and Lorentz boosts are denoted by g,

(2.1) Qup = 1504 — £,08, o, =0,3.
Together with the translations, these Lorentz generators will be denoted by I,
(22) F = {80,81,82,83,Qa5}.

As defined above, 2,3 do not commute with the linear component of the Dirac equation
in (1.1) due to the vectorial structure of the spinors. Instead we need to consider a correction
to the Lorentz vector fields, which represents the Lie derivative of the spinor field with respect
to the Lorenz vector fields:
~ 1
(2.3) Qop = Qap + 3%a%s; forall 0 <a<p<3.
This indeed satisfies R
Qap, v"0,] = 0.

We will later apply ﬁag to the Dirac component of the Maxwell-Dirac system (1.1). However,

this is not the end of the story as we want to apply these vector fields to the nonlinear system,
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which itself has Lorentz invariance. Explicitly, when applying ﬁag to the Maxwell-Dirac
system (1.1) implies, for instance, that for the first equation we should formally be able
expressed the RHS as follows

(24) —i’y“auﬁagl/} —|— Qaﬂ¢ = ﬁaﬂ (’YﬂAlﬂﬁ) = ﬁaﬂAu7#¢ + Au’yuﬁa[gw.

Here the only thing we did was to distribute ﬁag, observing that one potential outcome
would be to have the corresponding vector field applied to A,,, which is naturally different
from the vector field applied to ¢. At the same time, this new vector field, denoted here
by 1,3, should be commuting with the linear component of the second equation. More
so, it should distribute itself according to the product rule in the nonlinearity of the wave
equation, namely, we should have

(25) DQaﬁAu - _Qaﬁqu)/yu,éb - J’Y}AQaﬁ,@Z}'
Indeed, a direct computation leads to the following expressions for the generators of the
Lorentz group of symmetries for the full Maxwell-Dirac system:
Lemma 2.1. The family of vector fields {Qag, @ag}, with o, 8 = 0,3, and so that
~ 1
Qa = Qa + =V
QapAs = QapAs + gssAa — GasAs,
commute with the linear Mazwell-Dirac equations and satisfy the product rule in (2.4), (2.5).
For both the Dirac and the wave components of (1.1) we have defined ten vector fields and
in the following we denote these generalized vector fields by I'; to I';y (omitting the hat and
tilde) and employ multi-index notation in the following, i.e.,
=1y,  JeN"

Separating derivatives and vector fields we write we will weight differently the two kinds of
derivatives, and set

I=F = {T70"} 1143101 <h-

2.3. Energies for the Dirac equation on hyperboloids and orthogonal decomposi-
tions in C*. Suppose 9 is a solution for the homogeneous Dirac equation. We can write
the L2-conservation law for the inhomogeneous Dirac equation with a source term F' in the
density-flux form

(2.7) OW? + 0; (1T ) = —2Im('yOF).

An immediate consequence of this is the conservation of the L? norm of the solution on time
slices. However, in this article we will also need to use energy functionals on hyperboloids

H:={(t,z)|t* —2° = > 0}.

In the homogeneous case F' = 0, integrating the density-flux relation within the region
between H and the initial surface ¢ = 0 we obtain the energy relation

(2.8) 1 (0)lIZ> = Err(v),

XX-10
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where the energy of 1) on the hyperboloid H is given by
(2.9) En() = / (olv? + v™y "y ) do
H,
The density for this energy is
en () = volv]? + vty 47y,

which is positive definite since the normal vector to the hyperboloid is time-like. We first
diagonalize it with respect to the Euclidean metric, by writing

<¢, ;")

1
where using polar coordmates we have denoted
. x
(2.10) 7P =044, 0=—.
! |z

To complete our diagonalization we need to consider the spectral properties of the matrix
7v°4%. The matrices «? share with 77 the following properties:

Lemma 2.2. For each 6 € S?, the matriz v°~% is Hermitian and has double eigenvalues 1.

Motivated by this lemma, in order to better describe the energy on hyperboloids it is useful
to introduce projectors

1
Pl = 5([4 ++%)

on the positive, respectively the negative eigenspaces of 7°v?. Correspondingly, we split

Y =1+ = Py + Py,
where we can think of the two components as “outgoing”, respectively “incoming”. Then we
can rewrite the energy density on the hyperboloid H as

(2.11) enV) 1= <=l + <L

The two components ¢4 of ¥ will play different roles in our decay bounds for the Dirac field.

Another interpretation of the energy density on the hyperboloids can be naturally obtained
by using the hyperbolic metric and volume element. The invariant measure on the hyperbolic
space is related to the above Euclidean measure by

do = Vt2 + 22 (t* — 2%) dVy.

Then the above energy is rewritten in an invariant form as

(67

Eﬂw:—zp%wfm< Hp oy dVy, M= 0

12— g2
Here it is natural to introduce the (positive definite) inner product on C*
(2.12) (W ") = ="y v%).
Comparing this with (2.11) we can diagonalize this in terms of the 1 decomposition as

t+r
2+ |2,

T

t —
(213) 91 =~ sl +
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The matrix v above will play an important role in the sequel. We begin with
Lemma 2.3. The matriz v¥ satisfies (y)? = I, and has double eigenvalues +1.
Based on this property, we introduce the new set of projectors
(2.14) 2PF =15+",  wv=ua/t € B(0,1).
These generate a decomposition of C* as a direct sum of two subspaces V* defined as
(2.15) VE = ker P

Since v is in general not symmetric, these projectors are no longer orthogonal in the
Euclidean setting. However, the (-, )y inner product turns out instead to be the one with
respect to which the projectors PE are indeed orthogonal:

Lemma 2.4. The subspaces V™ and V™~ are orthogonal with respect to the (-,-)y inner
product, and PT are the corresponding orthogonal projectors.

3. OUTLINE OF PROOFS OF THE MAIN RESULTS

This section aims to provide an outline of the main ideas that go into the proofs of the
results in [17]. We have structured the steps of the proof in a modular fashion, where each
module can be understood separately and only the main result carries forward. We distinguish
four main modules/steps:

(i) energy estimates for the linearized equation,
(ii) vector field energy estimates,
(ili) pointwise bounds derived from energy estimates (sometimes called Klainerman-
Sobolev inequalities),
(iv) asymptotic and wave packet analysis.

While this may seem like a standard approach, there are a number of technical difficulties that
prevent us from carrying a straightforward analysis, and also there are several improvements
we bring to the analysis.

The proof of the global result is structured as a bootstrap argument. But unlike the
classical approach where a large number of vector field bounds are needed, here our bootstrap
assumption involves only pointwise bounds on the solutions, precisely it has the form

_ce
~ ()
which is consistent with the linear dispersive decay bounds for the Dirac equation, respectively

the wave equation. Then the final objective becomes to show that we can improve this bound.
This is accomplished in several steps as noted above:

(3.1) 1@l zs + 1A o=

3.1. Energy estimates for the linearized equation. These are relatively straightforward,
as they are carried out in our base Sobolev space L? x HY/2 x H~1/2. Nevertheless, their
proof is still instructive in understanding how a minimal t“¢ energy growth can be derived
using only the above bootstrap assumptions.
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The solutions for the linearized system around a solution (i, A) are denoted by (¢, B).
Including also source terms, the linearized system takes the form

_Z.’Yuau(b + ¢ = 7MAM¢ + FVMBM@ZJ + F
(3'2> DBH = _5’7/1¢ - E’Y“QS + Gu
0"B, = 0.

For completeness we write down the energy estimates for the linearized system (3.2). These
are obtained assuming the bootstrap hypothesis (3.1), which is consistent with having minimal
assumptions on the control norms used in getting these energy estimates. To keep the ideas
simple here, we assume this holds in a time interval [0, 7']. However, our bootstrap argument

for the full problem will instead be carried out in the regions C'-r which we introduce in the
next section, see (3.6).

Proposition 3.1. Assuming the bootstrap bound (3.1) (on ), we have the estimate

16, BYB) 150 < [l(&, B)D)] 30 +/1 C1Coes ™ [|(6, B)(s)II50 ds

t

(3.3) +|Re / / (6 OF + |D| 10, B, G dads|.
1 JRr3

In particular, in the case F'= G = 0, we get the energy estimate

(3.4) 1(&, B)(#)|leo < (8)<[[(6, B)(0)]

These energy estimates are central for our analysis. On one hand, they are partly responsible
for the choice we make for the bootstrap assumption. On the other hand, they also provide
the starting point for the vector fields bounds for the solution to (1.1), which are described
in subsection 3.2.

0.

3.2. Energy estimates for the solutions. This is again done under the above bootstrap
condition (3.1), and it yields energy bounds with a t“¢ growth. It also includes the vector
field bounds, and for clarity they are separated into several steps. They are first proved for
the solution and its higher derivatives, second for vector fields, and finally for both vector
fields and derivatives applied to the solution. While using just interpolation inequalities and
Gronwall type inequalities in time works in the first case, in order to obtain vector field
energy bounds using only our bootstrap assumptions we work instead in dyadic time slabs
denoted by C7, which with the proper set-up enable us to optimize the interpolation of vector
field bounds. In this we follow the lead of the earlier work of Ifrim-Stingo [18].

Returning to the main goal of this subsection, we recall that we want to establish energy
bounds for (¢, A) and their higher derivatives as well as energy bounds for the solution
(1, A) to which we have applied a certain number of vector fields admissible to (1.1). These
functions solve a system which is closely related to the linearized system, but the vector fields
bring in additional difficulties which require a more complex argument.

Ideally, given such a bootstrap assumption in a time interval [0, 7], one would like to prove
a vector field energy bound of form

(3.5) IT=F(, A)(B)lLro S (OFIT=" (25, A)(0)]| o,
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where ¢ ~ (. Here we would like to use interpolation and Gronwall’s inequality as in the
previous section. But since our vector fields also involve time derivatives, the interpolation
should happen in a space-time setting. Because of this we will no longer be able to apply
directly Gronwall’s inequality in time; instead it turns out that a dyadic time decomposition
would address the issue; this is similar to the work of the second author in [18].

N t ’
N AN - /
N - —
RN H,, Lt = |z
N N s s
N > 4
N -
N AN e ,
N ~ -
<A AT B. ,
N “cup” egion 7
s
Y
’
Cr N ’
N s
N ’
\
N
N T ,
N ,
N
N
N ’
N ,
,
x

N ¢ t=|z|
AN 4T H, ;
> \\\ // //
C\ N // //
AN AN 7 7
N
\\ SO T // //
,
A 7
N e
C N
T/2 T 4
7
N 7
N
T/2 7
N 7
A 7
N 7
7
N 7
e
x

F1GURE 2. Overlapping Cr regions

Ideally one might want to work in the overlapping dyadic regions [T, 4T] x R3, except that
such regions cannot be well foliated by hyperboloids. So we define instead the regions

Cr = {t € [T, 4T, t* — 2* < 4T%},
and also
(3.6) Cor = {t €10,4T], * — 2* < 4T?}.

For interpolation purposes, we will also use a slight enlargement C;. of Cr where we add a
lower cap, thus working with the region we define next

(3.7) Cf :=CrU{(t,z) € [T/2,TINR3 * — 2> > T?/4};
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explicitly, this is a slab with a cap removed on top and with a similar cap added at the
bottom.

Our main bootstrap argument in [17] will be carried out exactly in a region of the form C_,
where we will assume that the bootstrap assumption (3.1) holds with a large constant Cj,
and then show that we can improve the constant.

The aim here is to carry out the first step of this process, namely to prove that, under
such a bootstrap assumption in C'.7, we can obtain vector field energy estimates in the same
region C'_r. For this, the strategy will be to inductively prove the vector field bounds in the
(overlapping) regions Cyp for dyadic T, losing a 1 + Ce factor at every step.

To measure our solutions in C7, it is convenient to introduce a stronger norm which does
not contain only the energy, but also the size of the source terms in the corresponding linear
equation. Thus we define the following norms in the regions Cr:

(38) 11w, Allxy = (W, AT oeo + T2 = V080 + Yl 2(ery + T2 OA| 3120 -

After this discussion, we are ready to state our main energy estimates:

Proposition 3.2. Assume that the bootstrap bounds (3.1) hold in Ccp. Then in any dyadic
region Cr, C Cop we have the energy estimates

(3.9) D=8, Al xg, S ATDEIT=" (W, A)(0)[[ 0, T < T,
holding for a total of k = 9 vector fields and derivatives, with ¢ ~ Cj.

This in particular implies the fixed time energy bounds in (3.5), but also provides additional
information which we will use later on for the Klainerman-Sobolev inequality.

Remark 3.3. The proof of this proposition splits the analysis in three parts. First we derive
the bounds if only translation vector fields are applied, then if only € (this is a shorthand
notation for Q,s which we will frequently use throughout) vector fields are applied, and
finally if a mix of translation and 2 vector fields is applied.

3.3. Pointwise (Klainerman-Sobolev) bounds. These are derived from the previous
energy bounds, and are akin to classical Sobolev embeddings but on appropriate scales. For
this purpose we separate the dyadic time slabs C; above into smaller sets, namely the dyadic
regions C’%S, where 7" stands for dyadic time, S for the dyadic distance to the cone, and =+ for
the interior/exterior cone, plus an additional interior region C#* and an exterior region C%.
Then it becomes important, as an intermediate step, to derive space-time L? local energy
bounds, localized to these sets. Once this is done, our pointwise bounds are akin to Sobolev
embeddings or interpolation inequalities in these regions, with the extra step of also using the
linear equation in several interesting cases. We note that these bounds inherit the t“¢ extra
growth from the energy estimates, so they do not suffice in order to close the bootstrap.

A first step in recovering the bootstrap bounds on the global time scale is to prove
appropriate Klainerman-Sobolev inequalities, where the aim is to obtain pointwise bounds
from the integral X type bounds in Proposition 3.2. By itself this does not suffices globally
in time because the time growth t“¢ from the energy estimates will carry over. Instead it
only suffices almost globally in time. Nevertheless, the bounds we establish here will suffice
in order to estimate the errors in the asymptotic equations in later sections.

Our main result here is linear and applies at a fixed dyadic scale T. Because of this, we
omit the 7°¢ factor in Proposition 3.2. An intermediate step is to show that
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Theorem 3.4. Assume that in a time dyadic region Cr U Crjs we have

(3.10) IT=(e, A)Ollx, <1, k=0,

Then in Cr we have

(3.11) [l St - )=,

(3.12) 0A| SNt —r) 72,

(3.13) |\ TA| <732,

where § > 0. In addition, inside the cone we have an improved bound for T A, namely
(3.14) |\ TA| < ()32t —r)~V2,

Remark 3.5. What is missing here is the uniform ¢~ bound for A, which would be too much
to ask for at this point, using only the information given in the hypothesis of the theorem
above. Instead, we will prove pointwise bounds for A later on, by using the wave equation
for A and the pointwise bounds for .

Remark 3.6. The improved bound (3.14) is due to the fact that out baseline spaces for the
wave equation are H'/2 x H=/2 as opposed to H' x L? . With additional work one should
be able to obtain a similar improved bound for VA

(3.15) VA S @6t —n),

but this would require some adjustments to the X spaces.

The space-time decomposition. It suffices to prove the desired pointwise bounds in the
region C7, separately the Dirac and the wave component. Our strategy is to reduce the proof
of the theorem to standard Sobolev embeddings in regions which, in suitable coordinates,
have unit size. To place ourselves in this situation, we decompose the region Cf into smaller
regions which have fixed geometry, as follows:

(3.16) ci=crl o U o
+ 1<S<T
We now describe the sets in this decomposition:
e The interior region C4 is defined as
Cint = ([T/2,4T] x R¥) N {T?/4 < t* — x* < 4T?}.

This region can be foliated with large sections of hyperboloids.
e The exterior region C¢** is far outside the cone, and is described as

Ct = {(t,z);t € [T,4T);r > 2T}.

e The region around the cone, we dyadically decompose with respect to the size of
t — r, which measures how far or close we are to the cone

Clg:={(t,z) : S<t—r<2S T<t<2T}, where 1 <S<T,

3.17
( ) e =A{(t,x) : S<r—t<25 T <t<2T}, where1 <SS T;

see Figure 3.
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FIGURE 3. 1D vertical section of space-time regions Cg

Here C ¢ represents a spherically symmetric dyadic region inside the cone with width 9,
distance S from the cone, and time length 7T'. C¢ is the similar region outside the cone
where, far from the cone, we would have T' < S. To simplify the exposition we will use the
notation Crg as a shorthand for either C’;S or Cr4. These regions are also well foliated with
sections of hyperboloids. Such a decomposition has been introduced before by Metcalfe-
Tataru-Tohaneanu [30] in a linear setting; we largely follow their notations.

In the above definition of the C'rg sets we limit S to S > 1 because our assumptions are
invariant with respect to unit size translations. In particular, this leaves out a conical shell
region along the side of the cone t = r, which intersects both the interior and the exterior of
the cone. To also include this region in our analysis we redefine

(3.18) Cri={(t,x) : t—r| <2, T<t<2T}, where S ~ 1.

Localized energy bounds. These represent a key intermediate step in the proof of the
pointwise bounds, and differ depending on whether we are inside or outside the cone.

a) Inside the cone: This is the more favorable case, where the hyperboloids are space-like
and thus we have energy estimates on the hyperboloids. For the Dirac component 1, these
estimates represent an extension of (2.8), and, by (2.11), have the form

(3.19) s llzznersy S TS 210, s llzzginers) S I9llxr.

For the wave equation it is convenient to work at the H' level rather than at the H'/? level,
in which case the energy estimates on hyperboloids have the form

(3.20) IVAllz2iners) S TSP Allgr, 1T Allzuncrs) S IAllzr-

where
[Al gr = [VA(T) |22 + |OA[ 122

a) Qutside the cone: Here the hyperboloids are time-like so it is no longer possible to
obtain energy bounds on hyperboloids. Instead, we can prove L? bounds in the regions Crg:
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Lemma 3.7. We have the following estimates:

(3.21) il crs) S T N0xes 1Nz, crs) S S0l 5
respectively
(3.22) VAl crs) ST NNz 17 Allz 0r) S 521 A%,

As stated in the lemma, similar bounds also hold on Cf, but there they can be seen as
direct consequences of the energy estimates on hyperboloids.

The pointwise bounds. The localized energy bounds describe above can be applied to
the functions I'S%(¢), A) in each of the sets Ci™, C7g. Once this is done, the proof of the
pointwise bounds for (A, ) is restricted to each of these sets, whose analysis is at this point
completely decoupled, without any remaining global considerations. In these dyadic sets, the
pointwise bounds are broadly obtained by a careful application of Sobolev embeddings and
interpolation. The implementation of this idea, however, brings forth a number of technical
difficulties. To describe the strategy of the proof, we begin with some general considerations:

(1)
(i)

(iii)

Each of the regions C*, Czj“:s is foliated by hyperboloids, whose intersection with the
corresponding region has a unit size with respect to the hyperbolic metric.

All Lorentz boosts (2,4 involve derivatives along hyperboloids which, have a unit size
with respect to the hyperbolic metric. To obtain a basis in the tangent space we
complement these Lorentz vector fields with the radial derivative 0,.

The vector field bounds for A are all at the H'/? level, while the localized energy
bounds are at the H! level. To shift between the two, we simply use a spatial
Littlewood-Paley decomposition.

Taking the above ideas into account, we can now discuss separately the strategy to prove
pointwise bounds in each of our regions:

(a)
(b)

The region C4" is the easiest to consider, as there it suffices to use the Sobolev
embeddings on each of the hyperboloid sections H N C&t,

In the regions Cf gy we still have energy bounds on hyperboloids, so the Sobolev
embeddings on the hyperboloid sections H N Ci* are still applicable. This suffices
for the bounds for ¢, and 7 A. However, in the case of ¢ and VA we also need to
access their r derivatives, which are gained from the Dirac, respectively the wave
equation by expressing them in the frame involving only vector field derivatives and
0, derivatives.

In the region Cr¢ we no longer have direct access to traces on hyperboloids, so we
need to use the localized L? bounds in the entire region. We view the tangent space
of these regions as spanned by 9, and by vector field derivatives. As in the Cjg
case, the 0, derivatives are accessed via Dirac, respectively the wave equation by
expressing them in this frame. In the Dirac case we obtain an elliptic system in
the r direction, which yields better decay bounds than inside the cone. In the wave
case we obtain control over 9?A, which can be used in an interpolation argument
combined with the vector field bounds.

In the exterior region C£% we can use the finite speed of propagation and straightfor-
ward energy estimates followed by Sobolev embeddings, without any need for vector
field bounds.
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3.4. Asymptotic analysis for » and A. Combining the vector field energy bounds with
the Klainerman-Sobolev inequalities yields pointwise decay bounds for ¢ and A but with
an additional t factor, which does not allow one to close the bootstrap, and even less to
describe their asymptotics. This is rectified via a careful analysis of the asymptotic behavior
of both A and v, which is done in several stages.

The asymptotic profiles and the asymptotic equation for . Heuristically one expects
a Klein-Gordon type asymptotic expansion for the spinor field,

(3.23) Gt ) =732 VI R (L) + O, 6> 0,
+

with well chosen slower varying asymptotic profiles p*. In the case of the linear Dirac flow one
may choose p* = p*(v) to depend only on the velocity v = x/t, with the added restriction
that p* € V*, where these two H-orthogonal subspaces are defined in (2.15). However, for
our nonlinear flow this is no longer possible, and instead we need to allow the profiles to also
have a slow dependence on t,

pt=p(tw),  pteV™

Then the objectives are

(i) to identify good asymptotic profiles, and

(ii) to study their time dependence on rays (asymptotic equation).
The asymptotic profiles are defined using the method of wave packet testing of Ifrim-
Tataru [19], [21], [20], [22]. However, the wave packet analysis is carefully adapted to the
Dirac system, which is novel and quite interesting. The profiles constructed in this manner
are shown to provide a good approximation to the spinor field 1 in the sense of (3.23), and
to satisfy an appropriate asymptotic equation, which turns out to be an ode of the form

(3.24) i0ipE (1, 0) = v A%pT(t,v) + O(t™170), o> 0.

In both cases the errors are estimated both in L? and in L*> norms, based on the vector field
energy estimates and the matching pointwise bounds; these exhibit ¢ growth, but that is
harmless in the proof of the error bounds.

Since the connection coefficients A are real, the asymptotic equation (3.24) allows us to
propagate uniform pointwise bounds for p*, which are then transferred to v using (3.23).
Thus, by the end of this section we are able to prove t~%/2 decay for 1 on rays = = vt, and
thus to close the ¥ part of the bootstrap loop.

Uniform bounds for A. The ¢! decay bounds for A are obtained directly from the wave
equation for A, using the standard bounds for the fundamental solution for the d’Alembertian.
Here one needs to separately estimate the contributions of the initial data and of the source
term, where for the latter we use the ¢t=3/2 decay bounds for 1 from the previous step.
This closes the A part of the bootstrap loop, and thus completes the proof of the global
well-posedness result in Theorem 1.1.

Radiation profiles for ¢) and A inside the cone. These are constructed in the last section
of the [17], whose final objective is to prove the modified scattering result in Theorem 1.3.
This is achieved in several steps, where we successively construct
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(a) an initial radiation profile pZ for ¢, which corresponds to an exact solution to (3.24),
without source term. This is accurate only up to a phase rotation, but suffices for
the next step, which requires only the profile size ||pZ || 5.

(b) a radiation profile a* (v) for A, which can be thought of as the limit of (¢* — z?)A*
along rays x = vt. This is obtained by solving the inhomogeneous wave equation
with a —3-homogeneous source term which corresponds to replacing p* with its
radiation profile in (3.23). Expressed in hyperbolic coordinates, this yields exactly
the equation (1.20).

(c) Using the result in part (b) we refine the choice of the radiation profile p% for 1,
removing the phase rotation ambiguity in (a). This is achieved by replacing A with
its radiation profile in the asymptotic equation (3.24).
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