In this work, we review part of the results obtained in [12] for computing cancellations for dispersive PDEs with random initial data. The idea is to get a new combinatorial perspective on the cancellations discovered by Deng and Hani (see [16]) in the context of Wave Turbulence when one wants to derive rigorously wave-kinetic equations. This new perspective is based on decorated trees developed for low regularity schemes, together with a well-chosen arborification map that rewrites these trees into linear combinations of words. With this new combinatorial basis, one develops graphical rules to compute cancellations.
@article{SLSEDP_2024-2025____A7_0, author = {Yvain Bruned}, title = {Decorated trees, arborification for cancellations in wave~turbulence}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:16}, pages = {1--15}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2024-2025}, doi = {10.5802/slsedp.180}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.180/} }
TY - JOUR AU - Yvain Bruned TI - Decorated trees, arborification for cancellations in wave turbulence JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:16 PY - 2024-2025 SP - 1 EP - 15 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.180/ DO - 10.5802/slsedp.180 LA - en ID - SLSEDP_2024-2025____A7_0 ER -
%0 Journal Article %A Yvain Bruned %T Decorated trees, arborification for cancellations in wave turbulence %J Séminaire Laurent Schwartz — EDP et applications %Z talk:16 %D 2024-2025 %P 1-15 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.180/ %R 10.5802/slsedp.180 %G en %F SLSEDP_2024-2025____A7_0
Yvain Bruned. Decorated trees, arborification for cancellations in wave turbulence. Séminaire Laurent Schwartz — EDP et applications (2024-2025), Exposé no. 16, 15 p. doi : 10.5802/slsedp.180. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.180/
[1] Y. Alama Bronsard, Y. Bruned, K. Schratz. Approximations of Dispersive PDEs in the Presence of Low-Regularity Randomness. Found. Comput. Math. 24, (2024), 1819–1869. | DOI | Zbl
[2] C. Bellingeri, Y. Bruned. Symmetries for the gKPZ equation via multi-indices. | arXiv | Zbl
[3] Y. Bruned, A. Chandra, I. Chevyrev, M. Hairer. Renormalising SPDEs in regularity structures. J. Eur. Math. Soc. (JEMS), 23, no. 3, (2021), 869-947. | DOI | Zbl
[4] B. Bringmann Y. Deng, A. Nahmod, H. Yue . Invariant Gibbs measures for the three dimensional cubic nonlinear wave equation. Invent. Math. 236, (2024), 1133–1411. | DOI | Zbl
[5] Y. Bruned, V. Dotsenko. Chain rule symmetry for singular SPDEs. | arXiv | Zbl
[6] Y. Bruned, F. Gabriel, M. Hairer, L. Zambotti, Geometric stochastic heat equations. J. Amer. Math. Soc. (JAMS) 35, no. 1, (2022), 1-80. | DOI | Zbl
[7] Y. Bruned, M. Gerencsér, U. Nadeem Quasi-generalised KPZ equation. | arXiv | Zbl
[8] Y. Bruned, M. Hairer, L. Zambotti. Algebraic renormalisation of regularity structures. Invent. Math. 215, no. 3, (2019), 1039–1156. | DOI | Zbl
[9] Y. Bruned. Singular KPZ Type Equations. 205 pages, PhD thesis, Université Pierre et Marie Curie - Paris VI, 2015. tel-01306427
[10] Y. Bruned. Derivation of normal forms for dispersive PDEs via arborification. | arXiv | Zbl
[11] Y. Bruned, K. Schratz. Resonance based schemes for dispersive equations via decorated trees. Forum of Mathematics, Pi, 10, (2022), E2. | DOI | Zbl
[12] Y. Bruned, L. Tolomeo Cancellations for dispersive PDEs with random initial data. | arXiv | Zbl
[13] J. C. Butcher. An algebraic theory of integration methods. Math. Comp. 26, (1972), 79–106. | DOI | Zbl
[14] A. Connes, D. Kreimer. Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199, no. 1, (1998), 203–242. | DOI | Zbl
[15] Y. Deng, Z. Hani. Full derivation of the wave kinetic equation. Invent. math. 233, (2023), 543-724. | DOI | Zbl
[16] Y. Deng, Z. Hani. Derivation of the wave kinetic equation: Full range of scaling laws. | arXiv | Zbl
[17] Y. Deng, Z. Hani. Long time justification of wave turbulence theory. | arXiv
[18] Y. Deng, Z. Hani, X. Ma. Long time derivation of Boltzmann equation from hard sphere dynamics. | arXiv | Zbl
[19] J. Ecalle, B. Vallet. The arborification-coarborification transform: analytic, combinatorial, and algebraic aspects. Ann. Fac. Sci. Toulouse (6) 13, no. 3, (2004), 575–657. | DOI | Zbl
[20] F. Fauvet and F. Menous, Ecalle’s arborification coarborification transforms and Connes Kreimer Hopf algebra, Annales Sc. de l’Ecole Normale Sup. 50, no. 1, (2017), 39-83. | DOI | Zbl
[21] M. Gerencsér. Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré, Analyse non linéaire 37, no. 3. (2020), 663–682 | DOI | Zbl
[22] Z. Guo, S. Kwon, T. Oh. Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Comm. Math. Phys. 322, no. 1, (2013), 19–48. | DOI | MR | Zbl
[23] M. Hairer. Solving the KPZ equation. Ann. Math 178, no. 2, (2013), 559–664. | DOI | Zbl
[24] M. Hairer. A theory of regularity structures. Invent. Math. 198, no. 2, (2014), 269–504. | DOI | Zbl
[25] M. Hairer, E. Pardoux. A Wong-Zakai theorem for stochastic PDEs. J. Math. Soc. Japan, 67, no. 4, (2015), 1551–1604. | DOI | Zbl
[26] M. Hairer, J. Quastel. A class of growth models rescaling to KPZ. Forum of Mathematics, Pi, 6, (2018), E3. | DOI | Zbl
Cité par Sources :