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Decorated trees, arborification for cancellations
in wave turbulence
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Universite de Lorraine, CNRS, IECL, F-54000 Nancy, France
Email:yvain.bruned@univ-lorraine.fr.

Abstract
In this work, we review part of the results obtained in [12] for computing can-
cellations for dispersive PDEs with random initial data. The idea is to get a new
combinatorial perspective on the cancellations discovered by Deng and Hani (see
[16]) in the context of Wave Turbulence when one wants to derive rigorously
wave-kinetic equations. This new perspective is based on decorated trees developed
for low regularity schemes, together with a well-chosen arborification map that
rewrites these trees into linear combinations of words. With this new combinatorial
basis, one develops graphical rules to compute cancellations.
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1 Introduction

Perturbative expansions based on decorated trees and Feynman diagrams have
become one of the main tools in the context of Wave Turbulence. In [15, 16, 17],
Deng and Hani developed a rigorous justification for wave-kinetic equations. The
main strategy of the proof involves summing infinitely many Feynman diagrams
built out of some decorated trees. More recently, using the same ideas, a long-
time derivation of the Boltzmann equation has been provided in [18]. The main
combinatorics developed in these works are molecules, which are a type of Feynman
diagrams. All the careful analysis for obtaining bounds on these diagrams before
resummation is performed via a sophisticated cutting algorithm on these molecules.
This formalism is also used for detecting cancellations in [16, Section 3.3], which
they refer to as “miraculous cancellations”. The authors have to come back to the
iterated integrals associated with these molecules for computing them.
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In [12], an alternative combinatorial formalism has been proposed for computing
the cancellations between Feynmann diagrams observed in [16, Section 3.3]. The
aim of the seminar was mainly to present the part of [12] that covers [16] as other
cancellations could be understood via the formalism developed in the present note
(see Remark 1.1), which shows the large scope of such an approach.

The main idea is to introduce a general unified framework for computing and
understanding the cancellations coming from Wave Turbulence. We start by recalling
the decorated tree formalism used from [11] for encoding low regularity schemes
for dispersive PDEs, that are schemes that minimise the regularity on the initial
data by embedding the resonance into the discretisation. This allows us to expand
the k-th Fourier coefficient of the solution of a dispersive PDEs in the form of a
B-series. This expansion is formed of oscillatory integrals which are multi-linear
in the random Gaussian initial data. This is the subject of Section 2, which is
written with the cubic non-linear Schrödinger equation as the main example for this
paper. However, the formalism proposed could be applied to any dispersive PDEs.
The decorated tree formalism together with the B-series expansion are extension
of the classical B-series for ODEs (see [13]). Moreover, this formalism draws its
inspiration from decorated trees and B-series that appeared in Regularity Structures,
when one wants a systematic way to solve singular SPDEs (see [24, 8, 3]).

In Section 3 equipped with this expansion, one wants to understand the behaviour
of the quantity of interest in Wave Turbulence that is E(|uk|2). We use the Wick
formula for computing this expectation as the random initial data is Gaussian. We
can write then an expansion using the formalism of [1] which replaces decorated
trees by pairs of decorated trees where the leaves come in pairs. These pairings
among the initial data come from the Wick formula. Then, the main idea of [12] is
to change the perspective by using a crucial identity given in Proposition 3.1 by

ei(s−t)k2 = E(e−itk2ηke−isk2ηk), (1.1)

where the ηk are i.i.d Gaussian complex random variables and it is the type of
noise used for randomizing the initial data. One applies the identity (1.1) for each
propagator inside the iterated integrals. One can interpret this repeated analytical
transformation in a combinatorial way via a well-chosen arborification map a. This
map allows us to move from decorated trees to words on a well-chosen alphabet.
These words will also encode iterated integrals, but these integrals be simpler, as
now they are on a simplex of the form 0 < t1 < ... < tn < t where the ti are the
time variables of integration. The definition of a is dictated by the form of the
equation and the identity (1.1). This map is inspired by the arborification used in
[10] for rewriting the Poincaré-Dulac normal form proposed in [22] for dispersive
equations. The idea of arborification was first introduced by Ecalle in the study of
dynamical systems (see [19, 20]). Let us also stress that the idea of the arborification
is to repeatedly cut some edges in a trees and to put the decorated node as letters.
This is a reminiscence of the Butcher-Connes-Kreimer Hopf algebra (see [13, 14])
used for renormalising Feynman Diagrams and understanding the composition of
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B-series. It is also similar in spirit to the various cutting algorithms designed
for Wave Turbulence in [15] (see the proof of the Rigidity Theorem) and for the
Boltzmann equation in [18].

Once the tree-based iterated integrals have been rewritten via words, one can
conduct combinatorial arguments (change of the colors for some leaves, order on
some letters) in order to compute the cancellation observed in [16]. We terminate
Section 3 with several examples of computations with these combinatorial rules.
We end this introduction with a couple of remarks that provide some perspectives.

Remark 1.1 The formalism developed in [12] can also be applied to the cancellations
that appear in [4] which showed that the Φ4

3 (Gibbs) measure is invariant under the
dynamics of the three-dimensional cubic wave equation. Indeed, it is possible to
derive an identity similar to (1.1) for the wave equation with random initial data and
to rewrite the iterated integrals appearing in the expansion of the solution of the
wave equation with the help of words. The graphical rules are a bit different, as one
has to proceed with some integration by parts. This is in agreement with the idea
that one cannot ignore the specificities of various dispersive equations. Therefore,
some parts of the combinatorics depend crucially on the dispersive PDEs. One
can still state a MetaTheorem (see [12, Metathm. 1]) saying that a well-chosen
arborification and words formalism are an essential tool for computing cancellations
for dispersive PDEs.

Remark 1.2 In the context of parabolic singular SPDEs, cancellations have also
been computed with some graphical rules. It started in [23] where a hidden
logarithmic cancellation was first observed for the KPZ equation. The approach
started to become more systematic in [25, 26] as more renormalisation constants
have to be computed. Therefore, graphical rules have to be introduced. These rely
on the fact that the heat kernel K is non-anticipative, therefore, it loops in some
oriented Feynman diagrams, which allows improved estimates. Moreover, one uses
the following relation in the context of the KPZ type equations

(∂xK ∗ ∂xK)(z) =
1

2
(K(z) +K(−z)) (1.2)

where ∗ is the space-time convolution. One does not use exactly this identity in
the computation, but a version true up to a small error (See [26, Lemma 6.11]).
Equipped with this formalism, one is able to compute and check cancellations in
[9] for the generalised KPZ equation. It boils down to tedious computations on
Feynman diagrams when one repeatedly applies (1.2) and some integrations by parts
in order to reduce the diagram to a primitive diagram where rules cannot be applied
anymore. This cancellations allows us to consider solutions that are “geometric”,
meaning that they satisfy the chain rule property.

Remark 1.3 The cancellations observed for the generalsied KPZ in [9] identities
have been pushed further in [21] with general integration by parts identities. They are
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used for quasilinear SPDEs to show the locality in the solution of the counter-terms
that appear in the renormalised equation (see [7] for a general statement). These
cancellations have been understood at a more conceptual level in [6], where the
chain rule symmetry has been characterised as the kernel of a linear map defined on
decorated trees. The dimension of this kernel and its basis are computed only for
space-time white noise in [6]. The full subcritical regime is treated in a systematic
way via operad theory and homological algebra in [5]. The specific case of dimension
one is considered in [2] with multi-indices and elementary techniques.

Understanding cancellations for singular SPDEs via symmetries for some singular
SPDEs in the full subcritical regime has been obtained only recently and requires
advanced algebra. One expects to explain the cancellation obtained in [16, 4]
as a consequence of symmetry coming from the equation. One can think about
the symplectic nature of the equation. It is still an open question to get a more
fundamental argument that justifies these cancellations.
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2 Decorated trees for dispersive PDEs

In this section, we introduce the decorated trees and B-series formalism when one
expands solutions of dispersive PDEs with iterated integrals. The formalism exposed
here is coming from [11]. We focus on the cubic non-linear equation Schrödinger
equation without loss of generality. This equation is given by

(∂t + i∆)u = iµ2|u|2u, u(0, x) = v(x). (2.1)

where x ∈ Td
L = [0, L]d. The random initial data v is given by

v(x) =
1

Ld

∑

k∈Zd
L

vke
2πikx, vk =

√
wkηk

where Zd
L = (L−1Z)d and w : Rd → [0,+∞) is a given Schwartz function. The ηk

are i.i.d centred complex Gaussian random variables satisfying for k, ℓ ∈ Zd
L

E(|ηk|2) = 1, E(ηkηℓ) = 0.

Here, the parameter µ2 is the strength of the non-linear interaction and L is the size
of the box considered. The initial data v is said to be well-prepared in the context
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of Wave Turbulence. The idea is to understand the behaviour of E(|uk|2) when the
size of the box L tends to infinity and µ to zero. One expects E(|uk|2) to solve a
kinetic-wave equation up to a certain kinetic time. We keep these notations as the
cancellations we are interested in were found in the context of Wave Turbulence in
[16]. Equation (2.1) can be rewritten in Duhamel form as

u(t) = eit∆v + iµ2
∫ t

0
ei(t−s)∆|u(s)|2u(s)ds.

In Fourier space, one has

uk(t) = e−itk2vk + iµ2
∑

k=−k1+k2+k3

∫ t

0
e−i(t−s)k2 ūk1(s)uk2(s)uk3(s)ds(2.2)

where pointwise product in physical space ūu2 is sent to convolution product in
Fourier space. Here, k1 comes with a minus sign in k = −k1 + k2 + k3 due to
the conjugate ū. Moreover, eit∆ is sent to e−itk2 and e−is∆ is sent to eisk2 . One
iterates (2.2) by replacing ukj (t) by

ukj (t) = e−itk2j vkj + O(t),

with j ∈ {1, 2, 3}. We obtain the following first order approximation of the k-th
Fourier coefficient uk(t):

uk(t) = e−itk2vk + iµ2
∑

k=−k1+k2+k3

e−itk2

∫ t

0
eisk

2
(eisk

2
1 v̄k1)(e−isk22vk2)(e−isk23vk3)ds+ O(t2).

One can encode the previous Duhamel iterates using a decorated tree series. We
denote by U r

k (v, t) the first iterated integrals of size r of the Duhamel expansion.
These are integrals with r integrations in time. One has

|uk(t) − U r
k (v, t)| = O(tr+1)

where the regularity asked on the initial data hidden in the notation O corresponds
to the regularity needed to define the first iterated integrals up to order r. Decorated
trees are used to provide a precise description of U r

k (v, t). One uses the following
B-series type formula

U r
k (v, t) =

∑

T∈Tr
k

Υ(T )(v)
S(T )

(ΠT )(t) (2.3)

where Tr
k is a suitable set of decorated trees of size r, S(T ) is a symmetry factor and

Υ(T ) is an elementray differential associated with T depending on the initial data v.
The map Π sends T to an oscillatory integral. Such a formalism is reminiscence
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of the B-series (named after Butcher) that describes numerical schemes for ODEs
and PDEs. It has been introduced in [11] for describing low regularity schemes. It
is also largely inspired from the treatment of singular stochastic partial differential
equations (SPDEs) via regularity structures in [24, 8, 3] where a local ansatz for the
solutions takes a similar form. One can notice that the decorated trees encode at the
same time iterated integrals (ΠT )(t) and elementary differentials Υ(T )(v). Below,
we describe the series for r = 2. One has

T2
k = {T0, T1, T2, T3, ki ∈ Zd

L},

where

T0 =

k

, T1 =

k1 k2 k3

, T2 =

k4

k1 k3k2

k5

, T3 =

k4

k1 k3k2

k5

.

where for T1, k = −k1 + k2 + k3, for T2, k = −k4 − k1 + k2 + k3 + k5 and for T3,
k = k4 + k1 − k2 − k3 + k5. An edge (resp. ) corresponds to a factor e−itk2 (resp.
eitk

2), while an edge (resp. ) corresponds to an integral iµ2
∫ t
0 e

−i(t−s)k2 · · · ds
(resp. −iµ2

∫ t
0 e

i(t−s)k2 · · · ds ). The dotted edges can be seen as taking the complex
conjugate of the operator. Also, the frequencies add up to the root with a minus sign
for dotted edges. Indeed, for the decorated tree T3, one has

k = k4 − ℓ3 + k5, −ℓ3 = k1 − k2 − k3

where ℓ3 corresponds to the node decoration of the inner nodes not connected to the
root. When one interprets these decorated trees as iterated integrals, one has to order
the time variables following the partial order given by the decorated tree. If two blue
edges lie on the same path to the root, the edge closer to the root corresponds to a
variable in time bigger than the one associated with the other blue edge. One has

(ΠT0)(t) = e−itk2

(ΠT1)(t) = iµ2
∫ t

0
e−i(t−s)k2eis(k21−k22−k23)ds

(ΠT2)(t) = −µ4
∫ t

0
e−i(t−s)k2eis(k24−k25)

∫ s

0
e−i(s−r)ℓ22eir(k21−k22−k23)drds

(ΠT3)(t) = µ4
∫ t

0
e−i(t−s)k2e−is(ℓ24+k25)

∫ s

0
ei(s−r)ℓ23eir(−k21+k22+k23)drds.

(2.4)

The size of a decorated tree T is denoted by |T | and corresponds to the number of
blue edges in T . This is also the number of integrations in time inside (ΠT )(t). One
has

(ΠT )(t) = O(t|T |).
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The symmetry factor S(T ) corresponds to the number of internal symmetries of the
tree T taking the edge decorations into account but not the node decorations. One
obtains

S(T0) = 1, S(T1) = 2, S(T2) = 2, S(T2) = 4.

The 2 in S(T1) and S(T2) comes from the fact that one can permute the two leaves
decorated by k2 and k3. For T3, one can permute k4 and k5 in addition which gives
an extra factor 2. The elementary differential Υ(T )(v) corresponds to a product
of initial data associated with the leaves of a decorated tree. One has to take into
account also a factor connected to the structure of the tree: In the case of the NLS
equation, this factor is 2 for each node . One gets

Υ(T0)(v) = ηk
√
wk, Υ(T1)(v) = 2η̄k1ηk2ηk3

3∏

j=1

√
wkj ,

Υ(T2)(v) = 2η̄k1 η̄k4ηk2ηk3ηk5

5∏

j=1

√
wkj ,

Υ(T3)(v) = 4η̄k2 η̄k3ηk1ηk4ηk5

5∏

j=1

√
wkj .

(2.5)

3 Cancellations via arborification

In the previous decorated trees, we have assumed that the frequencies on the leaves,
the kj are independent. This means that one has a summation for each of the kj . In
Wave turbulence, the quantity of interest is E(|uk|2). Using the B-series for uk and
truncating to the correct order, one gets:

E(|uk|2) =
∑

T1,T2∈Tr
k

1{|T1|+|T2|≤r}E
(
Υ(T1)(v)Υ(T2)(v)

)

(ΠT1)(t)
S(T1)

(ΠT2)(t)
S(T2)

+ O(tr+1).

(3.1)

For computing the quantity E(Υ(T1)(v)Υ(T2)(v)), we recall the Wick formula for
computing expectations of product of random Gausssian variables. Let I be a finite
set and (Xi)i∈I a collection of centred jointly Gaussian random variables. Then

E

(∏

i∈I
Xi

)
=
∑

p∈P(I)

∏

{i,j}∈p
E(XiXj) (3.2)

where P(I) are partitions of I with two elements of I in each block of the partition.
Below, we provide an example of computation for T0 and T1 defined in (2.4). One
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has from (2.5)

E(Υ(T0)(v)Υ(T1)(v)) = E(ηkηk1 η̄k2 η̄k3)
√
wk

3∏

j=1

√
wkj

= (E(ηkη̄k3)E(ηk1 η̄k2) + E(ηkη̄k2)E(ηk1 η̄k3))
√
wk

3∏

j=1

√
wkj

=
(
1{k=k3}∩{k1=k2} + 1{k=k2}∩{k1=k3}

)
wkwk1 .

(3.3)

In the application of the Wick formula, we have excluded the terms of the form
E(ηkiηkj ) because they are zero due to the constraint on the noise η. We have also
used the fact that

E(ηkη̄k3) = 1{k=k3}.

One can then rewrite (3.1) using pairs of trees that encode the pairings among the
noise given by the previous indicators. One has

E(|uk|2) =
∑

F=T1·T2∈Gr
k

mF
Υ̂(T1)(v)
S(T1)

Υ̂(T2)(v)
S(T2)

(ΠT1)(t)(ΠT2)(t) + O(tr+1).

where T1, T2 are taken to be in Tr
k with |T1| + |T2| ≤ r, and one assumes some

pairing between the leaves of T1 and T2. The elementary differential Υ̂ is defined as
the same as Υ but without the ηk. The symmetry factor S does not depend on the
frequency decoration, therefore it is the same definition with the pairings. The factor
mF counts the number of pairings that give the same object. In the computation
(3.3), one can symmetrise the result in k2 and k3 to see that one gets the same value
twice. For the formula above, we are using the notations from [1]. Let us illustrate
these new objects with an example F = T0 · T̂1 given by

T0 =

k

, T̂1 =

k1 k1 k

.

Then

(ΠT̂1)(t) = itµ2e−itk2 , S(T̂1) = S(T1) = 2, mF = 2,

Υ̂(T0)(v) =
√
wk, Υ̂(T̂1)(v) = 2wk1

√
wk.

In the following, we will use the shorthand notation:

(Π̂T )(v, t) :=
Υ̂(T )(v)
S(T )

(ΠT )(t).
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Now, we work in a more general case where some of the leaves come in pairs, but
not necessarily all of them. We want to understand cancellations observed in [16]
between the associated oscillatory integrals and to propose a new systematic way to
compute them. As an example, let us consider the following decorated trees:

T̂2 =

ℓ1

k2 ℓ1k1

k5

, T̂3 =

k3

k1 k3k2

k5

,

where −ℓ1 = k1 − k2 − k3 and k = k1 − k2 + k5. The oscillatory integrals are
given by

(Π̂T̂2)(v, t) = −µ4wℓ1
√
wk1

√
wk2

√
wk5∫ t

0
e−i(t−s)k2eis(k25−ℓ21)

∫ s

0
e−i(s−r)k23eir(k22−k21−ℓ21)drds

(Π̂T̂3)(v, t) = µ4wk3
√
wk1

√
wk2

√
wk5∫ t

0
e−i(t−s)k2eis(k23+k25)

∫ s

0
ei(s−r)ℓ21eir(k22−k21−k23)drds

If we suppose that |k3 − ℓ1| ≤ L−1, one can make the following identification up to
a small error:

wℓ1 ≈ wk3 .

One can notice from the explicit expression of the iterated integrals described above
the following cancellation:

Π̂(T̂2 + T̂3)(v, t) ≈ 0.

This is exactly the first of the three (families of) “miraculous cancellations” appearing
in [16]. We want to derive a combinatorial formalism that explains this and the other
cancellations. We first start with a simple observation that rewrites any internal
edge of the previous tree as two edges:

Proposition 3.1 One has

ei(s−t)k2 = E(e−itk2ηke−isk2ηk). (3.4)

Proof. It is an immediate consequence of the definition of the noises ηk. Indeed,
one has

E(e−itk2ηke−isk2ηk) = ei(s−t)k2E(ηkηk) = ei(s−t)k2 .
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Then, the consequence of the previous proposition is that one can view the propagator
ei(s−t)k2 as a pairing of T c

0 given by

T c
0 =

k

, (Π̂T c
0 )(v, t) = e−itk2ηk.

Here, for a leaf colored in green, we omit the √
wk in the interpretation of the

decorated tree as an oscillatory integral. Then

ei(s−t)k2 = E
(

(Π̂T c
0 )(v, t)(Π̂T c

0 )(v, t)
)
.

Below, we provide another example of a decorated tree with the green color on some
leaves and give its oscillatory integral

T̂ c
3 =

k3

k1 k3k2

k5

,

(3.5)

and

(Π̂T̂ c
3 )(v, t) = µ4

√
wk1

√
wk2

√
wk5∫ t

0
e−i(t−s)k2eis(k23+k25)

∫ s

0
ei(s−r)ℓ21eir(k22−k21−k23)drds.

Now, the main idea for computing cancellations is to apply Proposition 3.1 to the
propagators e−i(t−s)k2 that correspond to the blue internal edges of a decorated tree.
We introduce a new combinatorial structure based on words that will be appropriate
for describing the oscillatory integrals after this transformation. We consider words
on an alphabet A whose letters are given by:

k1

,

k1

,

ℓ1 ℓ2 ℓ3 ℓ4

. (3.6)

where for the last letter, one must have

ℓ1 + ℓ2 − ℓ3 − ℓ4 = 0. (3.7)

The third letter of (3.6) is close in spirit to what is happening for the hard sphere
dynamic used for the long-time derivation of the Boltzmann equation (see [18]).
Indeed, one can assume that the plain edges correspond to two particles that get a
shock and the dotted edges to the particles after the shock. The identity (3.7) shows
a conserved quantity in this dynamics. This is one of the fundamental combinatorial
reasons why the algorithms developed for the non-linear Schrödinger wave-kinetic
equation (see [15, 16, 17]) also work for Boltzmann.

They are also in A letters where some leaves have been colored in green. We
consider the words whose rightmost letter is taken among the first two letters of
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(3.6), on this alphabet that we denote by T (A). Below, we provide an example of
such a word:

W2 =

ℓ1 k1 k2 k3 k3 k5 ℓ1 k k

,

with ℓ1 + k1 − k2 − k3 = 0 and k3 + k5 − ℓ1 − k = 0. One interprets the previous
words as integrals in time over a simplex via a map Π̂A. One defines the map Π̂A

inductively on the construction of the words by starting with the letters a ∈ A:

(Π̂A
k

)(v, t) = e−itk2 ,

(Π̂A

k3 k5 ℓ1 k

)(v, t) =
√
wk5

√
wℓ1e

−it(k23+k25−ℓ21−k2).

One has more letters but their interpretation follows the same rules as above. Then,
for a non-empty word W and a letter a ∈ A, one has

(Π̂AWa)(v, t) = µ2(Π̂Aa)(v, t)
∫ t

0
(Π̂AW )(v, s)ds.

where Wa is the word that has for rightmost letters a and the rest of the word is
given by W . It is the concatenation of W with a. Then

(Π̂AW2)(v, t) = µ4e−itk2
∫ t

0

√
wk5

√
wℓ1e

−is(k23+k25−ℓ21−k)

∫ s

0

√
wℓ1

√
wk1

√
wk2e

−ir(ℓ21+k21−k22−k23)drds.

One introduces a product� on T (A) called shuffle product. It is given inductively
for two words au and bv with a, b ∈ A by:

au� bv = a(u� bv) + b(au� v), a� 1 = 1� a = a. (3.8)

Here, 1 denotes the empty word, the neutral for�. Now, we define a natural map a
called arborification between the decorated trees and T (A). One defines a as

a(
ℓ1 ℓ2 ℓ3 ℓ4

) =
ℓ1 ℓ2 ℓ3 ℓ4

, a(

T

) = ia(
k

·r T )
k

,

a(
ℓ1

T2 T3 T4

) = i(−i)2(a(
ℓ2

·r T2)� a(
ℓ3

·r T3)� a(
ℓ4

·r T4))
ℓ1 ℓ2 ℓ3 ℓ4

,

a(
ℓ1

T2 T3
ℓ4

) = i(−i)(a(
ℓ2

·r T2)� a(
ℓ3

·r T3))
ℓ1 ℓ2 ℓ3 ℓ4

,

(3.9)
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where we have assumed that k, ℓ2, ℓ3, ℓ3 are respectively the frenquencies associated
with the roots of T, T2, T3, T4. The product ·r is the merging root product by taking
two decorated trees and identifying their root. One has for example

ℓ1

·r
ℓ2 ℓ3ℓ4

=

ℓ1 ℓ2 ℓ3 ℓ4

.

Let us comment briefly on the recursive formula (3.9). Every blue edge in the
decorated tree is duplicated into two brown edges. This is a combinatorial version
of a repeated application of Proposition 3.1. One has a factor i for each plain blue
edge and a factor −i for each dotted blue edge. The shuffle product is used for
transforming integrals over a tree-shaped domain for integrals in time into an integral
over a simplex. Using this transformation, one can have the following words:

a(

ℓ1

k2 ℓ1k1

k5

) = −
ℓ1 k1 k2 k3 k3 k5 ℓ1 k k

,

a(

k3

k1 k3k2

k5

) =
ℓ1 k1 k2 k3 k3 k5 ℓ1 k k

.

A similar arborification map has been used in [10] for describing Poincaré-Dulac
Normal forms. One observes that

(Π̂T̂2)(v, t) = (Π̂Aa(T̂2))(v, t) = (Π̂AW2)(v, t).

The next theorem shows that this identity is true in general and connects the two
formalisms via decorated trees and words:

Theorem 3.2 One has for every decorated tree T

(Π̂T )(v, t) = (Π̂Aa(T ))(v, t).

This theorem has been first stated in [12, Thm 2.3] where one can find a proof
of this result. The previous theorem allows us to switch from decorated trees to
words which could be easier to compute cancellations. For example, making the
identification wk3 ≈ wℓ1 boils down to intervene the color of two pairs of leaves.
This can be encoded via a linear map on words that we denote by ψk3,ℓ1 . Below, we
show one example of computation

ψk3,ℓ1(
ℓ1 k1 k2 k3 k3 k5 ℓ1 k k

) =
ℓ1 k1 k2 k3 k3 k5 ℓ1 k k

. (3.10)

This allows us to show a combinatorial proof of the first cancellation:

Π̂Aa(

k3

k1 k3k2

k5

) = (Π̂A

ℓ1 k1 k2 k3 k3 k5 ℓ1 k k

)

Yvain Bruned
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≈ (Π̂Aψk3,ℓ1(
ℓ1 k1 k2 k3 k3 k5 ℓ1 k k

))

≈ −Π̂Aa(

ℓ1

k2 ℓ1k1

k5

).

This cancellation is up to a small error coming from the approximation wk3 ≈ wℓ1 .
The second cancellation in [16] is between two pairs of decorated trees described
below

T1 =

k2k1

r1 r2 k3

. . .

k1 k2 k3

and T2 =
h1 h2 h3

. . .

h2h1

r2 r1 h̄3

where . . . means that these two branches are connected to bigger trees. This
cancellation happens under the condition that the two node decorations at the base
of each of the trees are the same, i.e.

−k1 + k2 + k3 + r2 − r1 = −h1 + h2 + h3,

and that the trees containing the above subtrees are otherwise identical. We have that

a(
k2k1

r1 r2 k3

) = −
ℓ1 r1 r2 k3 k2k1ℓ2 ℓ1 ℓ2

= −a1a2
ℓ2

a(
k1 k2 k3

) = −i
k2k1ℓ3 k3 ℓ3

= −ia3
ℓ3

a(
h1 h2 h3

) = i

h2h1ℓ4 h3 ℓ4

= ib1

ℓ4

a(
h2h1

r2 r1 h3

) = −
ℓ5 r2 r1 h3 h1h2ℓ5 ℓ6 ℓ6

= −b2b3
ℓ6

where the condition

−k1 + k2 + k3 + r2 − r1 = −h1 + h2 + h3

can be rewritten as
ℓ2 = ℓ4, ℓ3 = ℓ6.

The last branches with a green node in the computation above belong in general to a
bigger letter. We now make the choice

h1 = k1, h2 = k2, h3 = ℓ1 = k3 + r2 − r1.
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This way, we obtain that

a1 = b2, a2 = b1, a3 = b3.

From the definition of a in (3.9), if T1, T2 are the two trees respectively, there exist
u, v in the word algebra T (A) such that

a(T1) = i(a1a2 � a3 � u)v

a(T2) = −i(b1 � b2b3 � u)v = −i(a2 � a1a3 � u)v.

Therefore, from the definition of the shuffle product (3.8), we have

a(T1) + a(T2) = i(a3a1a2)� u)v − i(a2a1a3 � u)v. (3.11)

In particular, we observe that the terms with the letters a1, a2, a3 in this order cancel
out. It turns out that from an analytical point of view, these are all the “problematic”
terms, in the sense that

Π̂A(a(T1) + a(T2))

can be estimated directly using [16, Lemma 7.1]. A third cancellation can also be
computed in the same way (see [12, Sec. 2]).
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