Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Séminaire Laurent Schwartz — EDP et applications
  • Année 2024-2025
  • Exposé no. 10
On almost periodic solutions to NLS without external parameters
Joackim Bernier1 ; Benoît Grébert1
1 Nantes Université, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, F-44000 Nantes, France
Séminaire Laurent Schwartz — EDP et applications (2024-2025), Exposé no. 10, 15 p.
  • Résumé

In this note, we present a result established in [BGR24] where we prove that nonlinear Schrödinger equations on the circle, without external parameters, admit plenty of infinite dimensional non resonant invariant tori, or equivalently, plenty of almost periodic solutions. Our aim is to propose an extended sketch of the proof, emphasizing the new points which have enabled us to achieve this result.

  • Détail
  • Export
  • Comment citer
Publié le : 2025-06-30
DOI : 10.5802/slsedp.177
Affiliations des auteurs :
Joackim Bernier 1 ; Benoît Grébert 1

1 Nantes Université, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, F-44000 Nantes, France
  • BibTeX
  • RIS
  • EndNote
@article{SLSEDP_2024-2025____A4_0,
     author = {Joackim Bernier and Beno{\^\i}t Gr\'ebert},
     title = {On almost periodic solutions to {NLS} without~external~parameters},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:10},
     pages = {1--15},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2024-2025},
     doi = {10.5802/slsedp.177},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.177/}
}
TY  - JOUR
AU  - Joackim Bernier
AU  - Benoît Grébert
TI  - On almost periodic solutions to NLS without external parameters
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:10
PY  - 2024-2025
SP  - 1
EP  - 15
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.177/
DO  - 10.5802/slsedp.177
LA  - en
ID  - SLSEDP_2024-2025____A4_0
ER  - 
%0 Journal Article
%A Joackim Bernier
%A Benoît Grébert
%T On almost periodic solutions to NLS without external parameters
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:10
%D 2024-2025
%P 1-15
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.177/
%R 10.5802/slsedp.177
%G en
%F SLSEDP_2024-2025____A4_0
Joackim Bernier; Benoît Grébert. On almost periodic solutions to NLS without external parameters. Séminaire Laurent Schwartz — EDP et applications (2024-2025), Exposé no. 10, 15 p. doi : 10.5802/slsedp.177. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.177/
  • Bibliographie
  • Cité par

[BB13] M. Berti, P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on 𝕋 d with a multiplicative potential, J. Eur. Math. Soc. 15 (2013), 229–286. | DOI

[BBHM18] P. Baldi, M. Berti, E. Haus, R. Montalto, Time quasi-periodic gravity water waves in finite depth, Inventiones Math. 214 (2018), 739–911. | DOI

[BC24] J. Bernier, N. Camps, Long time stability for cubic nonlinear Schrödinger equations on non-rectangular flat tori, 2024. | arXiv

[BCGP24] L. Biasco, L. Corsi, G. Gentile, M. Procesi, Asymptically full measure sets of almost-periodic solutions for the NLS equation, 2024. | arXiv

[BFG20] J. Bernier, E. Faou, B. Grébert, Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, Annals of PDE 6, 14 (2020). | DOI

[BG21] J. Bernier, B. Grébert, Long time dynamics for generalized Korteweg-de Vries and Benjamin-Ono equations, Arch. Rational Mech. Anal. 241, 1139–1241 (2021). | DOI

[BG22] J. Bernier, B. Grébert, Birkhoff normal forms for Hamiltonian PDEs in their energy space, Journal de l’Ecole polytechnique — Mathématiques, Tome 9 (2022), pp. 681-745. | DOI

[BGR24] J. Bernier, B. Grébert, T. Robert, Infinite dimensional invariant tori for nonlinear Schrödinger equations, 2024. | arXiv

[BHM23] M. Berti, Z. Hassainia, N. Masmoudi, Time quasi-periodic vortex patches of Euler equation in the plane, Inventiones Math., 233 (2023), 1279–1391. | DOI

[BKM18] M. Berti, T. Kappeler, R. Montalto, Large KAM tori for perturbations of the dNLS equation, Astérisque, 403. 2018. | DOI

[BMP20] L. Biasco, J.E. Massetti, M. Procesi, Almost periodic invariant tori for the NLS on the circle, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2020) no. 3, 711–758. | DOI

[BMP23] L. Biasco, J.E. Massetti, M. Procesi, Weak Sobolev almost periodic solutions for the 1D NLS, Duke Math. J., 172 (14) 2643 - 2714, 2023. | DOI

[Boh47] H. Bohr, Almost Periodic Functions, Chelsea Publishing Co., New York, 1947.

[Bou94] J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notice 1994 (1994), no. 11, 475–497. | DOI

[Bou98] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math. (2), 148 (1998), no. 2, 363–439. | DOI

[Bou00] J. Bourgain, On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math. 80, 1–35 (2000). | DOI

[Bou05] J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal. 229 (2005), no. 1, 62–94. | DOI

[Bou96b] J. Bourgain, Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equations, Geometric and Functional Analysis 6 (1996) 201–230. | DOI

[CGP23] L. Corsi, G. Gentile, M. Procesi, Almost-periodic solutions to the NLS equation with smooth convolution potentials, 2023. | arXiv

[Con23] H. Cong, The existence of full dimensional KAM tori for nonlinear Schrödinger equation, Math. Ann. Volume 390, pages 671–719, (2024). | DOI

[CW93] W. Craig, C.E. Wayne, Newton’s method and periodic solutions of nonlinear wave equation, Comm. Pure Appl. Math. 46 (1993), no. 11, 1409–1498. | DOI

[CY21] H. Cong, X. Yuan, The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 38 (2021), no.3, 759–786. | DOI

[EGK16] L.H. Eliasson, B. Grébert, S.B. Kuksin, KAM for non-linear beam equation, Geom. Funct. Anal. 26 (2016) 1588–1715. | DOI

[EK10] L.H. Eliasson, S.B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. Math. (2) 172 (2010), 371–435. | DOI

[ErTz13a] M.B. Erdoğan, N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Lett., 20 (2013), 1081–1090. | DOI

[ErTz13c] M.B. Erdoğan, N. Tzirakis Smoothing and global attractors for the Zakharov system on the torus, Anal. PDE, 6 (2013), pp. 723–750. | DOI

[FG24] R. Feola, F. Giuliani, Quasi-periodic traveling waves on an infinitely deep perfect fluid under gravity, Memoirs of the American Mathematical Society, 158 p. (2024). | DOI

[GP16] B. Grébert, E. Paturel, KAM for the Klein Gordon equation on 𝕊 d , Boll. Unione Mat. Ital, 9 (2016), 237–288. | DOI

[GX13] J. Geng, X. Xu, Almost-periodic solutions of one dimensional Schrödinger equation with the external parameters, J. Dyn. Differ. Equations 25 (2013), no. 2, 435–450. | DOI

[KP03] T. Kappeler, J. Pöschel, KdV & KAM, Springer (2003). | DOI

[KP96] S. Kuksin, J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. (2) 143 (1996), no. 1, 149–179. | DOI

[Kuk87] S. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 22–37. | DOI

[LX24] J. Liu, D. Xiang, Exact global control of small divisors in rational normal form, Nonlinearity, 37 075020. | DOI

[McC22] R. McConnell, Nonlinear smoothing for the periodic generalized nonlinear Schrödinger equation, J. Differential Equations, 341 (2022), 353–379. | DOI

[Pos96] J. Pöschel, A KAM theorem for some nonlinear PDEs, Ann. Sc. Norm. Pisa Cl. Sci.(4) 23 (1996), no. 1, 119–148.

[Pos02] J. Pöschel, On the construction of almost-periodic solutions for a nonlinear Schrödinger equation, Ergodic Theory Dynam. Systems 22 (2002), no. 5, 1537–1549. | DOI

[PP15] C. Procesi, M. Procesi, A KAM algorithm for the resonant non-linear Schrödinger equation, Advances in Math. (2015), 399–470. | DOI

[Way90] C.E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127 (1990), no. 3, 479–528. | DOI

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre