Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Séminaire Laurent Schwartz — EDP et applications
  • Année 2024-2025
  • Exposé no. 8
  • Suivant
Collision of two solitary waves of ZK
Frédéric Valet1
1 CY Cergy Paris Université. Laboratoire de recherche Analyse, Géométrie, Modélisation (UMR CNRS 8088), 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
Séminaire Laurent Schwartz — EDP et applications (2024-2025), Exposé no. 8, 14 p.
  • Résumé

We consider the collision of two co-propagating solitary waves for the Zakharov-Kuznetsov equation, a two-dimensional asymptotic model from plasma physics. Consider a pure two-solitary waves at time t=-∞, with nearly equal velocity and nearly equal ordinate. The emanating solution stays close in H 1 to the sum of two modulated waves on the whole time interval ℝ. This collision is characterized by a minimal distance between the waves and a transfer of mass.

We review in this note the description of the collision phenomenon obtained in [29] from time -∞ to +∞, inspired from the seminal article of Martel and Merle in [17] on the collision of two solitary waves for the quartic Korteweg-de Vries. The result in higher dimension requires substantial modifications to the proof. First, the solution is approximated by the sum of two modulated waves and a non-local term induced by the quadratic non-linearity, with an adjustment in three intrinsic directions related to the translation invariances and scaling. The evolution of the error induced by this approximation and the modulation parameters is controlled by bootstrap techniques, with a new energy functional, a refined argument to control the transverse direction and a non-explicit approximated ODE system to control the height and the distance between the waves.

We also review some asymptotic stability results from [28].

  • Détail
  • Export
  • Comment citer
Publié le : 2025-06-30
DOI : 10.5802/slsedp.176
Affiliations des auteurs :
Frédéric Valet 1

1 CY Cergy Paris Université. Laboratoire de recherche Analyse, Géométrie, Modélisation (UMR CNRS 8088), 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
  • BibTeX
  • RIS
  • EndNote
@article{SLSEDP_2024-2025____A3_0,
     author = {Fr\'ed\'eric Valet},
     title = {Collision of two solitary waves of {ZK}},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:8},
     pages = {1--14},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2024-2025},
     doi = {10.5802/slsedp.176},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.176/}
}
TY  - JOUR
AU  - Frédéric Valet
TI  - Collision of two solitary waves of ZK
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:8
PY  - 2024-2025
SP  - 1
EP  - 14
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.176/
DO  - 10.5802/slsedp.176
LA  - en
ID  - SLSEDP_2024-2025____A3_0
ER  - 
%0 Journal Article
%A Frédéric Valet
%T Collision of two solitary waves of ZK
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:8
%D 2024-2025
%P 1-14
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.176/
%R 10.5802/slsedp.176
%G en
%F SLSEDP_2024-2025____A3_0
Frédéric Valet. Collision of two solitary waves of ZK. Séminaire Laurent Schwartz — EDP et applications (2024-2025), Exposé no. 8, 14 p. doi : 10.5802/slsedp.176. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.176/
  • Bibliographie
  • Cité par

[1] H. Berestycki, P.-L. Lions, and L. A. Peletier. An ODE approach to the existence of positive solutions for semilinear problems in R N . Indiana Univ. Math. J., 30(1):141–157, 1981.

[2] Raphaël Côte, Claudio Muñoz, Didier Pilod, and Gideon Simpson. Asymptotic stability of high-dimensional Zakharov-Kuznetsov solitons. Arch. Ration. Mech. Anal., 220(2):639–710, 2016.

[3] W. Craig, P. Guyenne, J. Hammack, D. Henderson, and C. Sulem. Solitary water wave interactions. Phys. Fluids, 18(5):art. 057106, 25, 2006.

[4] Anne de Bouard. Stability and instability of some nonlinear dispersive solitary waves in higher dimension. Proc. Roy. Soc. Edinburgh Sect. A, 126(1):89–112, 1996.

[5] W. Eckhaus and P. Schuur. The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions. Math. Methods Appl. Sci., 5(1):97–116, 1983.

[6] A. V. Faminskiĭ. The Cauchy problem for the Zakharov-Kuznetsov equation. Differentsial’ nye Uravneniya, 31(6):1070–1081, 1103, 1995.

[7] B. Gidas, Wei Ming Ni, and L. Nirenberg. Symmetry of positive solutions of nonlinear elliptic equations in R n . In Mathematical analysis and applications, Part A, volume 7 of Adv. in Math. Suppl. Stud., pages 369–402. Academic Press, New York-London, 1981.

[8] Axel Grünrock and Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete Contin. Dyn. Syst., 34(5):2061–2068, 2014.

[9] Daniel Han-Kwan. From Vlasov-Poisson to Korteweg–de Vries and Zakharov-Kuznetsov. Comm. Math. Phys., 324(3):961–993, 2013.

[10] Tosio Kato. On the Korteweg-de Vries equation. Manuscr. Math., 28:89–99, 1979.

[11] Shinya Kinoshita. Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38(2):451–505, 2021.

[12] Christian Klein, Svetlana Roudenko, and Nikola Stoilov. Numerical study of Zakharov-Kuznetsov equations in two dimensions. J. Nonlinear Sci., 31(2):Paper No. 26, 28, 2021.

[13] Man Kam Kwong. Uniqueness of positive solutions of Δu-u+u p =0 in R n . Arch. Rational Mech. Anal., 105(3):243–266, 1989.

[14] David Lannes, Felipe Linares, and Jean-Claude Saut. The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation. In Studies in phase space analysis with applications to PDEs, volume 84 of Progr. Nonlinear Differential Equations Appl., pages 181–213. Birkhäuser/Springer, New York, 2013.

[15] Felipe Linares and Ademir Pastor. Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation. SIAM J. Math. Anal., 41(4):1323–1339, 2009.

[16] Yvan Martel and Frank Merle. Stability of two soliton collision for nonintegrable gKdV equations. Comm. Math. Phys., 286(1):39–79, 2009.

[17] Yvan Martel and Frank Merle. Inelastic interaction of nearly equal solitons for the quartic gKdV equation. Invent. Math., 183(3):563–648, 2011.

[18] Yvan Martel and Frank Merle. Inelasticity of soliton collisions for the 5D energy critical wave equation. Invent. Math., 214(3):1267–1363, 2018.

[19] Yvan Martel, Frank Merle, and Tetsu Mizumachi. Description of the inelastic collision of two solitary waves for the BBM equation. Arch. Ration. Mech. Anal., 196(2):517–574, 2010.

[20] Yvan Martel, Frank Merle, and Tai-Peng Tsai. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations. Comm. Math. Phys., 231(2):347–373, 2002.

[21] Yvan Martel and Tiên Vinh Nguyên. Construction of 2-solitons with logarithmic distance for the one-dimensional cubic Schrödinger system. Discrete Contin. Dyn. Syst., 40(3):1595–1620, 2020.

[22] Kevin McLeod, W. C. Troy, and F. B. Weissler. Radial solutions of Δu+f(u)=0 with prescribed numbers of zeros. J. Differ. Equations, 83(2):368–378, 1990.

[23] Tetsu Mizumachi. Weak interaction between solitary waves of the generalized KdV equations. SIAM J. Math. Anal., 35(4):1042–1080, 2003.

[24] Luc Molinet and Didier Pilod. Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 32(2):347–371, 2015.

[25] Abdon Moutinho. On the kink-kink collision problem of for the ϕ 6 model with low speed, 2023. | arXiv

[26] Claudio Muñoz. On the inelastic two-soliton collision for gKdV equations with general nonlinearity. Int. Math. Res. Not. IMRN, (9):1624–1719, 2010.

[27] Galina Perelman. Two soliton collision for nonlinear Schrödinger equations in dimension 1. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 28(3):357–384, 2011.

[28] Didier Pilod and Frédéric Valet. Asymptotic stability of a finite sum of solitary waves for the Zakharov-Kuznetsov equation. Nonlinearity, 37(10):41, 2024. Id/No 105001.

[29] Didier Pilod and Frédéric Valet. Dynamics of the collision of two nearly equal solitary waves for the Zakharov-Kuznetsov equation. Commun. Math. Phys., 405(12):94, 2024. Id/No 287.

[30] Xueke Pu. Dispersive limit of the Euler-Poisson system in higher dimensions. SIAM J. Math. Anal., 45(2):834–878, 2013.

[31] Walter A. Strauss. Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55(2):149–162, 1977.

[32] Frédéric Valet. Asymptotic K-soliton-like solutions of the Zakharov-Kuznetsov type equations. Trans. Amer. Math. Soc., 374(5):3177–3213, 2021.

[33] VE Zakharov and EA Kuznetsov. On three dimensional solitons. Zhurnal Eksp. Teoret. Fiz, 66:594–597, 1974.

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre