We consider the Benjamin-Ono equation on the line with a small dispersion parameter going to zero. After the shock time for the underlying inviscid Burgers equation, a dispersive shock wave appears in the solution when the parameter is small enough. We show that the solution is asymptotic to the multi-phase solution of Dobrokhotov and Krichever (generalizing periodic traveling waves) for the Benjamin-Ono equation, modulated by slow-varying parameters that depend only on the branches of the Burgers equations obtained by the method of characteristics. The proof relies on a solution formula of the Benjamin-Ono equation established by Gérard [28] and that we simplify for rational initial data in [7]. A paper on the zero-dispersion asymptotics will appear soon in [8].
@article{SLSEDP_2023-2024____A6_0, author = {Elliot Blackstone and Louise Gassot and Patrick G\'erard and Peter D. Miller}, title = {Zero-dispersion limit for the {Benjamin-Ono} equation}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:6}, pages = {1--16}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2023-2024}, doi = {10.5802/slsedp.169}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.169/} }
TY - JOUR AU - Elliot Blackstone AU - Louise Gassot AU - Patrick Gérard AU - Peter D. Miller TI - Zero-dispersion limit for the Benjamin-Ono equation JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:6 PY - 2023-2024 SP - 1 EP - 16 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.169/ DO - 10.5802/slsedp.169 LA - en ID - SLSEDP_2023-2024____A6_0 ER -
%0 Journal Article %A Elliot Blackstone %A Louise Gassot %A Patrick Gérard %A Peter D. Miller %T Zero-dispersion limit for the Benjamin-Ono equation %J Séminaire Laurent Schwartz — EDP et applications %Z talk:6 %D 2023-2024 %P 1-16 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.169/ %R 10.5802/slsedp.169 %G en %F SLSEDP_2023-2024____A6_0
Elliot Blackstone; Louise Gassot; Patrick Gérard; Peter D. Miller. Zero-dispersion limit for the Benjamin-Ono equation. Séminaire Laurent Schwartz — EDP et applications (2023-2024), Exposé no. 6, 16 p. doi : 10.5802/slsedp.169. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.169/
[1] C. J. Amick and J. F. Toland. Uniqueness and related analytic properties for the Benjamin-Ono equation—a nonlinear Neumann problem in the plane. Acta Mathematica, 167(1):107–126, 1991. | DOI | Zbl
[2] R. Badreddine. On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation. Pure and Applied Analysis, 6(2):379–414, 2024. | DOI | Zbl
[3] R. Badreddine. Zero dispersion limit of the Calogero-Moser derivative NLS equation. 2024.
[4] T. B. Benjamin. Internal waves of permanent form in fluids of great depth. J. Fluid Mech., 29(3):559–&, 1967. | DOI | Zbl
[5] S. Benzoni-Gavage, C. Mietka, and L. M. Rodrigues. Modulated equations of Hamiltonian PDEs and dispersive shocks. Nonlinearity, 34(1):578–641, 2021. | DOI | Zbl
[6] B. K. Berntson, E. Langmann, and J. Lenells. Spin generalizations of the Benjamin-Ono equation. Lett. Math. Phys., 112(3):45, 2022. Id/No 50. | DOI | Zbl
[7] E. Blackstone, L. Gassot, P. Gérard, and P. D. Miller. The Benjamin-Ono initial-value problem for rational data. In preparation, 2024.
[8] E. Blackstone, L. Gassot, P. Gérard, and P. D. Miller. The Benjamin-Ono equation in the zero-dispersion limit for rational initial data: generation of dispersive shock waves. In preparation, 2024.
[9] E. Blackstone, L. Gassot, P. Gérard, and P. D. Miller. The Benjamin-Ono equation for rational initial data: large-time asymptotics. In preparation, 2025.
[10] E. Blackstone, L. Gassot, and P. D. Miller. On strong zero-dispersion asymptotics for Benjamin-Ono soliton ensembles. to appear in Contemporary Mathematics, 2023.
[11] T. L. Bock and M. D. Kruskal. A two-parameter Miura transformation of the Benjamin-Ono equation. Phys. Lett. A, 74(3-4):173–176, 1979. | DOI
[12] Y. Brenier. Une application de la symétrisation de Steiner aux équations hyperboliques: la méthode de transport et écroulement. C. R. Acad. Sci., Paris, Sér. I, 292:563–566, 1981. | Zbl
[13] Y. Brenier. Résolution d’équations d’évolution quasilinéaires en dimension N d’espace à l’aide d’équations linéaires en dimension . J. Differ. Equations, 50:375–390, 1983. | DOI | Zbl
[14] Y. Brenier. Averaged multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal., 21:1013–1037, 1984. | DOI | Zbl
[15] X. Chen. Explicit formula for the Benjamin–Ono equation with square integrable and real valued initial data and applications to the zero dispersion limit. 2024.
[16] T. Claeys and T. Grava. Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach. Comm. Math. Phys., 286(3):979–1009, 2009. | DOI | Zbl
[17] T. Claeys and T. Grava. Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg-de Vries equation in the small-dispersion limit. Comm. Pure Appl. Math., 63(2):203–232, 2010. | DOI | Zbl
[18] T. Claeys and T. Grava. Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit. SIAM J. Math. Anal., 42(5):2132–2154, 2010. | DOI | Zbl
[19] P. Deift, S. Venakides, and X. Zhou. New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. Internat. Math. Res. Notices, (6):286–299, 1997. | Zbl
[20] S. Y. Dobrokhotov and I. M. Krichever. Multiphase solutions of the Benjamin-Ono equation and their averaging. Mat. Zametki, 49(6):42–58, 158, 1991.
[21] B. Dubrovin. On Hamiltonian perturbations of hyperbolic systems of conservation laws. II. Universality of critical behaviour. Comm. Math. Phys., 267(1):117–139, 2006. | DOI | Zbl
[22] G. A. El, L. T. K. Nguyen, and N. F. Smyth. Dispersive shock waves in systems with nonlocal dispersion of Benjamin-Ono type. Nonlinearity, 31(4):1392–1416, 2018. | DOI | Zbl
[23] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
[24] H. Flaschka, M. G. Forest, and D. W. McLaughlin. Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation. Comm. Pure Appl. Math., 33(6):739–784, 1980. | DOI | Zbl
[25] A. S. Fokas and M. J. Ablowitz. The inverse scattering transform for the Benjamin-Ono equation—a pivot to multidimensional problems. Stud. Appl. Math., 68(1):1–10, 2 1983. | DOI | Zbl
[26] L. Gassot. Lax eigenvalues in the zero-dispersion limit for the Benjamin-Ono equation on the torus. SIAM J. Math. Anal., 55(5):5782–5822, 2023. | DOI | Zbl
[27] L. Gassot. Zero-dispersion limit for the Benjamin-Ono equation on the torus with bell shaped initial data. Comm. Math. Phys., 401(3):2793–2843, 2023. | DOI | Zbl
[28] P. Gérard. An explicit formula for the Benjamin-Ono equation. Tunis. J. Math., 5(3):593–603, 2023. | DOI | Zbl
[29] P. Gérard. The Benjamin–Ono equation on the line : Explicit formula and small dispersion limit. In “Partial differential equations : Waves, nonlinearities and nonlocalities”, Proceedings of the Abel Symposium 2023, to appear, 2023.
[30] P. Gérard. The Lax pair structure for the spin Benjamin–Ono equation. Advances in Continuous and Discrete Models, 2023(1):21, 2023. | DOI
[31] P. Gérard. The zero dispersion limit for the Benjamin–Ono equation on the line. Comptes Rendus. Mathématique, 362:619–634, July 2024. | DOI | Zbl
[32] P. Gérard and S. Grellier. An explicit formula for the cubic Szegő equation. Trans. Am. Math. Soc., 367(4):2979–2995, 2015. | DOI | Zbl
[33] P. Gérard and T. Kappeler. On the integrability of the Benjamin-Ono equation on the torus. Communications on Pure and Applied Mathematics, 2020. | DOI
[34] P. Gérard, T. Kappeler, and P. Topalov. Sharp well-posedness results of the Benjamin-Ono equation in and qualitative properties of its solution. to appear in Acta Math., 2020. | DOI | Zbl
[35] P. Gérard and E. Lenzmann. The Calogero–Moser derivative nonlinear Schrödinger equation. Communications on Pure and Applied Mathematics, May 2024. | DOI | Zbl
[36] P. Gérard and A. Pushnitski. Unbounded Hankel operators and the flow of the cubic Szegő equation. Invent. Math., 232(3):995–1026, 2023. | DOI | Zbl
[37] P. Gérard and P. Topalov. On the low regularity phase space of the Benjamin-Ono equation, 2023. | arXiv
[38] T. Grava and C. Klein. Numerical study of a multiscale expansion of Korteweg-de Vries and Camassa-Holm equation. In Integrable systems and random matrices. In honor of Percy Deift. Conference on integrable systems, random matrices, and applications in honor of Percy Deift’s 60th birthday, New York, NY, USA, May 22–26, 2006, pages 81–98. Providence, RI: American Mathematical Society (AMS), 2008. | DOI | Zbl
[39] T. Grava and C. Klein. Numerical study of a multiscale expansion of the Korteweg-de Vries equation and Painlevé-II equation. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 464(2091):733–757, 2008. | DOI | Zbl
[40] T. Grava and C. Klein. A numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions. Physica D, 241(23-24):2246–2264, 2012. | DOI | Zbl
[41] A. V. Gurevich and L. P. Pitayevsky. Nonstationary structure of a collisionless shock wave. Soviet Journal of Experimental and Theoretical Physics, 38:291–297, 1974. | Zbl
[42] J. Hogan and M. Kowalski. Turbulent thresholds for continuum Calogero–Moser models. 2024.
[43] M. Ifrim and D. Tataru. Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation. Ann. Sci. Éc. Norm. Supér. (4), 52(2):297–335, 2019. | DOI | Zbl
[44] M. C. Jorge, A. A. Minzoni, and N. F. Smyth. Modulation solutions for the Benjamin-Ono equation. Phys. D, 132(1-2):1–18, 1999. | DOI | Zbl
[45] R. Killip, T. Laurens, and M. Visan. Scaling-critical well-posedness for continuum Calogero-Moser models. 2023. | DOI | Zbl
[46] K. Kim, T. Kim, and S. Kwon. Construction of smooth chiral finite-time blow-up solutions to Calogero–Moser derivative nonlinear Schrödinger equation. 2024.
[47] C. Klein and J.-C. Saut. Nonlinear dispersive equations. Inverse scattering and PDE methods, volume 209 of Appl. Math. Sci. Cham: Springer, 2021. | DOI | Zbl
[48] P. D. Lax and C. D. Levermore. The zero dispersion limit for the Korteweg-deVries (KdV) equation. Proc. Natl. Acad. Sci. USA, 76:3602–3606, 1979.
[49] P. D. Lax and C. D. Levermore. The small dispersion limit of the Korteweg-de Vries equation. I, II, III. Comm. Pure Appl. Math., 36(3,5,6):253–290, 571–593, 809–829, 1983. | DOI | Zbl
[50] D. Masoero, A. Raimondo, and P. R. S. Antunes. Critical behavior for scalar nonlinear waves. Physica D, 292–293:1–7, 2015. | DOI | Zbl
[51] Y. Matsuno. Exact multi-soliton solution of the Benjamin-Ono equation. J. Phys. A Math. Gen., 12(4):619–621, 1979. | DOI | Zbl
[52] Y. Matsuno. Number density function of Benjamin-Ono solitons. Phys. Lett. A, 87(1-2):15–17, 1981/82. | DOI
[53] Y. Matsuno. Nonlinear modulation of periodic waves in the small dispersion limit of the Benjamin-Ono equation. Phys. Rev. E (3), 58(6):7934–7940, 1998. | DOI
[54] Y. Matsuno. The small dispersion limit of the Benjamin-Ono equation and the evolution of a step initial condition. J. Phys. Soc. Japan, 67(6):1814–1817, 1998. | DOI | Zbl
[55] P. D. Miller. On the generation of dispersive shock waves. Physica D, 333:66–83, 2016. | DOI | Zbl
[56] P. D. Miller and A. N. Wetzel. Direct scattering for the Benjamin-Ono equation with rational initial data. Studies in Applied Mathematics, 137:53–69, 2015. | DOI | Zbl
[57] P. D. Miller and A. N. Wetzel. The scattering transform for the Benjamin–Ono equation in the small-dispersion limit. Physica D: Nonlinear Phenomena, 333:185–199, 2016. | DOI | Zbl
[58] P. D. Miller and Z. Xu. On the zero-dispersion limit of the Benjamin-Ono Cauchy problem for positive initial data. Communications on Pure and Applied Mathematics, 64:205–270, 2011. | DOI | Zbl
[59] P. D. Miller and Z. Xu. The Benjamin-Ono hierarchy with asymptotically reflectionless initial data in the zero-dispersion limit. Commun. Math. Sci., 10(1):117–130, 2012. | DOI | Zbl
[60] M. D. Mitchell. Results on the Small Dispersion Limits of the Intermediate Long Wave and Benjamin-Ono Equations. PhD thesis, University of Michigan, 2024.
[61] L. Molinet and D. Pilod. The Cauchy problem for the Benjamin–Ono equation in revisited. Anal. PDE, 5(2):365–395, 2012. | DOI | Zbl
[62] A. Moll. Finite gap conditions and small dispersion asymptotics for the classical periodic Benjamin-Ono equation. Quart. Appl. Math., 78(4):671–702, 2020. | DOI | Zbl
[63] A. Nakamura. A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution. J. Phys. Soc. Japan, 47(5):1701–1705, 1979. | DOI | Zbl
[64] A. Nakamura. Bäcklund transform and conservation laws of the Benjamin-Ono equation. J. Phys. Soc. Japan, 47(4):1335–1340, 1979. | DOI | Zbl
[65] H. Ono. Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan, 39(4):1082–1091, 1975. | DOI | Zbl
[66] J.-C. Saut. Sur quelques généralisations de l’équation de Korteweg-de Vries. J. Math. Pures Appl., 58:21–61, 1979. | Zbl
[67] J.-C. Saut. Benjamin-Ono and intermediate long wave equations: Modeling, IST and PDE. In Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, pages 95–160. Springer, 2019. | DOI | Zbl
[68] R. Sun. Complete integrability of the Benjamin-Ono equation on the multi-soliton manifolds. Commun. Math. Phys., 383:1051–1092, 4 2021. | DOI | Zbl
[69] T. Tao. Global well-posedness of the Benjamin–Ono equation in . J. Hyperbolic Differ. Equ., 1(01):27–49, 2004. | DOI | Zbl
[70] S. Venakides. The zero dispersion of the Korteweg-de Vries equation for initial potentials with non-trivial reflection coefficient. Comm. Pure Appl. Math., 38(2):125–155, 1985. | DOI | Zbl
[71] S. Venakides. The Korteweg-de Vries equation with small dispersion: higher order Lax-Levermore theory. Comm. Pure Appl. Math., 43(3):335–361, 1990. | DOI | Zbl
[72] Y. Wu. Simplicity and finiteness of discrete spectrum of the Benjamin-Ono scattering operator. SIAM J. Math. Anal., 48(2):1348–1367, 2016. | DOI | Zbl
[73] Y. Wu. Jost solutions and the direct scattering problem of the Benjamin-Ono equation. SIAM J. Math. Anal., 49(6):5158–5206, 2017. | DOI | Zbl
Cité par Sources :