We propose in this work new (and hopefully close to optimal) variants of entropy production estimates for the Landau equation, in terms of relative weighted Fisher information-like terms. We start by showing how the same kind of estimates can be obtained for a simpler 1D model, sometimes called Kac-Landau equation.
@article{SLSEDP_2019-2020____A6_0, author = {Laurent Desvillettes}, title = {About {Boltzmann{\textquoteright}s} {H} {Theorem} for the {Landau} equation}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:9}, pages = {1--13}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2019-2020}, doi = {10.5802/slsedp.143}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.143/} }
TY - JOUR AU - Laurent Desvillettes TI - About Boltzmann’s H Theorem for the Landau equation JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:9 PY - 2019-2020 SP - 1 EP - 13 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.143/ DO - 10.5802/slsedp.143 LA - en ID - SLSEDP_2019-2020____A6_0 ER -
%0 Journal Article %A Laurent Desvillettes %T About Boltzmann’s H Theorem for the Landau equation %J Séminaire Laurent Schwartz — EDP et applications %Z talk:9 %D 2019-2020 %P 1-13 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.143/ %R 10.5802/slsedp.143 %G en %F SLSEDP_2019-2020____A6_0
Laurent Desvillettes. About Boltzmann’s H Theorem for the Landau equation. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 9, 13 p. doi : 10.5802/slsedp.143. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.143/
[1] M. Aizenman and T. Bak, Convergence to equilibrium in a system of reacting polymers, Commun. Math. Phys., 65:203–230, 1979. | DOI | MR | Zbl
[2] R. Alexandre, and C. Villani. On the Landau approximation in plasma physics. Annales Inst. Henri Poincaré, (C) Analyse non-linéaire, 21(1):61–95, 2004. | DOI | MR | Zbl
[3] K. Carrapatoso, L. Desvillettes and L. He. Estimates for the large time behavior of the Landau equation in the Coulomb case. Arch. Rational Mech. Anal., 224(2):381–420, 2017. | DOI | MR | Zbl
[4] C. Cercignani. -theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), 34:231–241 (1983), 1982. | DOI | MR | Zbl
[5] I. Csiszar. Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung., 2:299–318, 1967. | DOI | MR | Zbl
[6] L. Desvillettes On Asymptotics of the Boltzmann Equation when the Collisions Become Grazing, Transport Theory Statist. Phys., 21(3):259–276, 1992. | DOI | MR | Zbl
[7] L. Desvillettes. Entropy dissipation estimates for the Landau equation in the Coulomb case and applications. J. Functional Anal., 269(5):1359-1403, 2015. | DOI | MR | Zbl
[8] L. Desvillettes About the Regularizing Properties of the Non Cut-off Kac Equation. Commun. Math. Phys., 168(2):417–440, 1995. | DOI | MR | Zbl
[9] L. Desvillettes. Entropy dissipation estimates for the Landau equation: General cross sections. Accepted for publication in the Proceedings of the workshop PSPDE III, Braga, Dec. 2014. | DOI | Zbl
[10] L. Desvillettes, L. He, J.-C. Jiang. In preparation. | DOI
[11] L. Desvillettes, C. Mouhot and C. Villani. Celebrating Cercignani’s conjecture for the Boltzmann equation. Kinet. Relat. Models, 4:277–294, 2011. | DOI | MR | Zbl
[12] L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part II. H-Theorem and applications. Commun. Partial Differential Equations, 25(1-2):261–298, 2000. | DOI | Zbl
[13] F. Golse, M. P. Gualdani, C. Imbert, A. F. Vasseur. Partial Regularity in Time for the Space Homogeneous Landau Equation with Coulomb Potential. | arXiv | DOI | MR
[14] L. Gross. Logarithmic Sobolev inequalities. Amer.J.Math., 97(4):1061-1083, 1975. | DOI | MR | Zbl
[15] Kac, Mark Probability and related topics in physical sciences. With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol. Lectures in Applied Mathematics. Proceedings of the Summer Seminar, Boulder, Colo., 1957, Vol. I Interscience Publishers, London-New York 1959. | DOI
[16] S. Kullback. A lower bound for discrimination information in terms of variation, IEEE Trans. Inf. The., 4:126–127, 1967. | DOI
[17] E.M. Lifschitz and L.P. Pitaevskii. Physical kinetics. Perg. Press., Oxford, 1981. | DOI
[18] B. Perthame. Transport equations in biology. Birkhauser Verlag AG, 2006. | DOI | Zbl
[19] G. Toscani. Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math., 57:521–541, 1999. | DOI | MR | Zbl
[20] G. Toscani and C. Villani. On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds. J. Statist. Phys., 98(5/6):1279–1309, 2000. | DOI | Zbl
[21] C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rat. Mech. Anal., 143(3):273–307, 1998. | DOI | MR | Zbl
[22] C. Villani. Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys., 234(3):455–490, 2003. | DOI | MR | Zbl
[23] K.-C. Wu. Global in time estimates for the spatially homogeneous Landau equation with soft potentials. J. Funct. Anal., 266:3134–3155, 2014. | DOI | MR | Zbl
Cited by Sources: