We review recent results of the authors concerning quantitative unique continuation estimates for operators with coefficients that are analytic in some (or all the) variables. We describe several applications for wave-like equations, but also equations based on hypoelliptic operators. These proceedings are a survey of the general results in [LL19] together with applications to wave equations [LL16] and to hypoelliptic equations [LL17, LL20b].
@article{SLSEDP_2019-2020____A4_0, author = {Camille Laurent and Matthieu L\'eautaud}, title = {Quantitative unique continuation for hyperbolic and hypoelliptic equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:6}, pages = {1--26}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2019-2020}, doi = {10.5802/slsedp.137}, zbl = {07436149}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.137/} }
TY - JOUR AU - Camille Laurent AU - Matthieu Léautaud TI - Quantitative unique continuation for hyperbolic and hypoelliptic equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:6 PY - 2019-2020 SP - 1 EP - 26 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.137/ DO - 10.5802/slsedp.137 LA - en ID - SLSEDP_2019-2020____A4_0 ER -
%0 Journal Article %A Camille Laurent %A Matthieu Léautaud %T Quantitative unique continuation for hyperbolic and hypoelliptic equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:6 %D 2019-2020 %P 1-26 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.137/ %R 10.5802/slsedp.137 %G en %F SLSEDP_2019-2020____A4_0
Camille Laurent; Matthieu Léautaud. Quantitative unique continuation for hyperbolic and hypoelliptic equations. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 6, 26 p. doi : 10.5802/slsedp.137. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.137/
[ABB20] Andrei Agrachev, Davide Barilari, and Ugo Boscain. A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint, volume 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2020. | DOI | Zbl
[Bah86] Hajer Bahouri. Non prolongement unique des solutions d’opérateurs “somme de carrés”. Ann. Inst. Fourier (Grenoble), 36(4):137–155, 1986. | DOI | Zbl
[Bah87] Hajer Bahouri. Dépendance non linéaire des données de Cauchy pour les solutions des équations aux dérivées partielles. J. Math. Pures Appl. (9), 66(2):127–138, 1987. | DOI | Zbl
[BCG14] Karine Beauchard, Piermarco Cannarsa, and Roberto Guglielmi. Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc. (JEMS), 16(1):67–101, 2014. | DOI | MR | Zbl
[BD08] Charles J. K. Batty and Thomas Duyckaerts. Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ., 8(4):765–780, 2008. | DOI | MR | Zbl
[BKL16] Roberta Bosi, Yaroslav Kurylev, and Matti Lassas. Stability of the unique continuation for the wave operator via Tataru inequality and applications. J. Differential Equations, 260(8):6451–6492, 2016. | DOI | MR | Zbl
[BLR92] Claude Bardos, Gilles Lebeau, and Jeffrey Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30:1024–1065, 1992. | DOI | MR | Zbl
[Bon69] Jean-Michel Bony. Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble), 19(1):277–304, 1969. | DOI | Zbl
[Bra14] Marco Bramanti. An invitation to hypoelliptic operators and Hörmander’s vector fields. SpringerBriefs in Mathematics. Springer, Cham, 2014. | DOI | Zbl
[Cal58] Alberto Pedro Calderón. Uniqueness in the Cauchy problem for partial differential equations. Amer. J. Math., 80:16–36, 1958. | DOI | MR | Zbl
[Car39] Torsten Carleman. Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat. Astr. Fys., 26B(17):1–9, 1939. | DOI | Zbl
[DF88] Harold Donnelly and Charles Fefferman. Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math., 93:161–183, 1988. | DOI | Zbl
[DF90] Harold Donnelly and Charles Fefferman. Nodal sets of eigenfunctions: Riemannian manifolds with boundary. In Analysis, et cetera, pages 251–262. Academic Press, Boston, MA, 1990. | DOI | Zbl
[DL09] Belhassen Dehman and Gilles Lebeau. Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim., 48(2):521–550, 2009. | DOI | MR | Zbl
[EZ11a] Sylvain Ervedoza and Enrique Zuazua. Observability of heat processes by transmutation without geometric restrictions. Math. Control Relat. Fields, 1(2):177–187, 2011. | DOI | MR | Zbl
[EZ11b] Sylvain Ervedoza and Enrique Zuazua. Sharp observability estimates for heat equations. Arch. Ration. Mech. Anal., 202(3):975–1017, 2011. | DOI | MR | Zbl
[FCZ00] Enrique Fernández-Cara and Enrique Zuazua. The cost of approximate controllability for heat equations: the linear case. Adv. Differential Equations, 5(4-6):465–514, 2000. | DOI | MR | Zbl
[FI96] Andrei V. Fursikov and Oleg Yu. Imanuvilov. Controllability of evolution equations, volume 34 of Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1996. | DOI | Zbl
[Hol01] Erik Holmgren. Über Systeme von linearen partiellen Differentialgleichungen. Öfversigt af Kongl. Vetenskaps-Acad. Förh., 58:91–103, 1901. | DOI
[Hör67] Lars Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–171, 1967. | DOI | MR | Zbl
[Hör90] Lars Hörmander. The Analysis of Linear Partial Differential Operators, volume I. Springer-Verlag, Berlin, second edition, 1990. | DOI | Zbl
[Hör94] Lars Hörmander. The analysis of linear partial differential operators. IV, volume 275 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1994. Fourier integral operators, Corrected reprint of the 1985 original. | DOI
[Hör97] Lars Hörmander. On the uniqueness of the Cauchy problem under partial analyticity assumptions. In Geometrical optics and related topics (Cortona, 1996), volume 32 of Progr. Nonlinear Differential Equations Appl., pages 179–219. Birkhäuser Boston, Boston, MA, 1997. | DOI | Zbl
[Joh49] Fritz John. On linear partial differential equations with analytic coefficients. Unique continuation of data. Comm. Pure Appl. Math., 2:209–253, 1949. | DOI | MR | Zbl
[Joh60] Fritz John. Continuous dependence on data for solutions of partial differential equations with a presribed bound. Comm. Pure Appl. Math., 13:551–585, 1960. | DOI | Zbl
[Leb92] Gilles Lebeau. Contrôle analytique. I. Estimations a priori. Duke Math. J., 68(1):1–30, 1992. | DOI | Zbl
[Leb96] Gilles Lebeau. Équation des ondes amorties. In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud., pages 73–109. Kluwer Acad. Publ., Dordrecht, 1996. | DOI | Zbl
[Lio88] Jacques-Louis Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, volume 8 of Recherches en Mathématiques Appliquées. Masson, Paris, 1988. | DOI | Zbl
[LL16] Camille Laurent and Matthieu Léautaud. Uniform observability estimates for linear waves. ESAIM Control Optim. Calc. Var., 22(4):1097–1136, 2016. | DOI | MR | Zbl
[LL17] Camille Laurent and Matthieu Léautaud. Tunneling estimates and approximate controllability for hypoelliptic equations. Memoirs of the American Mathematical Society. 2017. Accepted for publication. | DOI | Zbl
[LL19] Camille Laurent and Matthieu Léautaud. Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves. J. Eur. Math. Soc. (JEMS), 21(4):957–1069, 2019. | DOI | MR | Zbl
[LL20a] Camille Laurent and Matthieu Léautaud. The cost function for the approximate control of waves. work in progress, 2020. | DOI | MR | Zbl
[LL20b] Camille Laurent and Matthieu Léautaud. Logarithmic decay for damped hypoelliptic wave and Schrödinger equations. preprint, 2020. | DOI | Zbl
[LR95] Gilles Lebeau and Luc Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations, 20:335–356, 1995. | DOI | Zbl
[LR97] Gilles Lebeau and Luc Robbiano. Stabilisation de l’équation des ondes par le bord. Duke Math. J., 86:465–491, 1997. | DOI | Zbl
[LRL12] Jérôme Le Rousseau and Gilles Lebeau. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var., 18(3):712–747, 2012. | DOI | MR | Zbl
[Mil06] Luc Miller. The control transmutation method and the cost of fast controls. SIAM J. Control Optim., 45(2):762–772, 2006. | DOI | MR | Zbl
[Phu04] Kim Dang Phung. Note on the cost of the approximate controllability for the heat equation with potential. J. Math. Anal. Appl., 295(2):527–538, 2004. | DOI | MR | Zbl
[Phu10] Kim Dang Phung. Waves, damped wave and observation. In Some problems on nonlinear hyperbolic equations and applications, volume 15 of Ser. Contemp. Appl. Math. CAM, pages 386–412. Higher Ed. Press, 2010. | DOI | Zbl
[Rob91] Luc Robbiano. Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques. Comm. Partial Differential Equations, 16(4-5):789–800, 1991. | DOI | Zbl
[Rob95] Luc Robbiano. Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal., 10:95–115, 1995. | DOI | Zbl
[RS76] Linda Preiss Rothschild and Elias M. Stein. Hypoelliptic differential operators and nilpotent groups. Acta Math., 137(3-4):247–320, 1976. | DOI | MR | Zbl
[RS80] Michael Reed and Barry Simon. Methods of modern mathematical physics. Academic press, 1980. | DOI | Zbl
[RT05] Ludovic Rifford and Emmanuel Trélat. Morse-Sard type results in sub-Riemannian geometry. Math. Ann., 332(1):145–159, 2005. | DOI | MR | Zbl
[RT73] Jeffrey Rauch and Michael Taylor. Penetrations into shadow regions and unique continuation properties in hyperbolic mixed problems. Indiana Univ. Math. J., 22:277–285, 1972/73. | DOI | MR | Zbl
[Rus73] David L. Russell. A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Studies in Appl. Math., 52:189–221, 1973. | DOI | MR | Zbl
[RZ98] Luc Robbiano and Claude Zuily. Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients. Invent. Math., 131(3):493–539, 1998. | DOI | MR | Zbl
[Tat95] Daniel Tataru. Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem. Comm. Partial Differential Equations, 20(5-6):855–884, 1995. | DOI | Zbl
[Tat99a] Daniel Tataru. Carleman estimates, unique continuation and applications. Lecture notes. unpublished, https://math.berkeley.edu/tataru/papers/ucpnotes.ps, 1999. | DOI
[Tat99b] Daniel Tataru. Unique continuation for operators with partially analytic coefficients. J. Math. Pures Appl. (9), 78(5):505–521, 1999. | DOI | Zbl
Cited by Sources: