We are interested in the evolution of a system of particles around thermodynamical equilibria presenting an infinite number of particles. That is, we study the asymptotic stability of solutions at equilibrium of the Hartree equation :
where is a random field, is a real fonction that characterises the interactions between particles, is the convolution product, and is the expectation. This equation admits solutions whose laws are invariant under temporal and spatial translations, they are thus nonlocalised. We will present their asymtotic stability through a scattering result.
On s’intéresse à l’évolution d’un système de particules autour d’équilibres thermodynamiques présentant un nombre infini de particules. Il s’agit d’étudier la stabilité asymptotique de solutions à l’équilibre de l’équation de Hartree :
où est un champ aléatoire, une fonction réelle qui caractérise les interactions entre particules, le produit de convolution et est l’espérance. Cette équation admet des solutions dont les lois sont invariantes par translations temporelles et spatiales, elles sont donc non localisées. On exposera leur stabilité asymptotique à travers un résultat de diffusion.
@article{SLSEDP_2017-2018____A14_0, author = {Anne-Sophie de Suzzoni and Charles Collot}, title = {Un r\'esultat de diffusion pour l{\textquoteright}\'equation de {Hartree} autour de~solutions non localis\'ees}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:14}, pages = {1--12}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2017-2018}, doi = {10.5802/slsedp.123}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.123/} }
TY - JOUR AU - Anne-Sophie de Suzzoni AU - Charles Collot TI - Un résultat de diffusion pour l’équation de Hartree autour de solutions non localisées JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:14 PY - 2017-2018 SP - 1 EP - 12 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.123/ DO - 10.5802/slsedp.123 LA - fr ID - SLSEDP_2017-2018____A14_0 ER -
%0 Journal Article %A Anne-Sophie de Suzzoni %A Charles Collot %T Un résultat de diffusion pour l’équation de Hartree autour de solutions non localisées %J Séminaire Laurent Schwartz — EDP et applications %Z talk:14 %D 2017-2018 %P 1-12 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.123/ %R 10.5802/slsedp.123 %G fr %F SLSEDP_2017-2018____A14_0
Anne-Sophie de Suzzoni; Charles Collot. Un résultat de diffusion pour l’équation de Hartree autour de solutions non localisées. Séminaire Laurent Schwartz — EDP et applications (2017-2018), Talk no. 14, 12 p. doi : 10.5802/slsedp.123. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.123/
[1] Claude Bardos, Laszlo Erdős, François Golse, Norbert Mauser, and Horng-Tzer Yau, Derivation of the Schrödinger-Poisson equation from the quantum -body problem, C. R. Math. Acad. Sci. Paris 334 (2002), no. 6, 515–520. | DOI | Zbl
[2] Claude Bardos, François Golse, Alex D. Gottlieb, and Norbert J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures Appl. (9) 82 (2003), no. 6, 665–683. | DOI | MR | Zbl
[3] Niels Benedikter, Marcello Porta, and Benjamin Schlein, Mean–field evolution of fermionic systems, Communications in Mathematical Physics 331 (2014), no. 3, 1087–1131 (English). | DOI | MR | Zbl
[4] Thomas Chen, Younghun Hong, and Nataša Pavlović, Global well-posedness of the NLS system for infinitely many fermions, Arch. Ration. Mech. Anal. 224 (2017), no. 1, 91–123. | DOI | MR | Zbl
[5] —, On the scattering problem for infinitely many fermions in dimensions at positive temperature, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 2, 393–416. | DOI | MR | Zbl
[6] Anne-Sophie de Suzzoni, An equation on random variables and systems of fermions, , 2015. | arXiv
[7] Alexander Elgart, László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Nonlinear Hartree equation as the mean field limit of weakly coupled fermions, J. Math. Pures Appl. (9) 83 (2004), no. 10, 1241–1273. | DOI | MR | Zbl
[8] Jürg Fröhlich and Antti Knowles, A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction, J. Stat. Phys. 145 (2011), no. 1, 23–50. | DOI | MR | Zbl
[9] Zihua Guo, Zaher Hani, and Kenji Nakanishi, Scattering for the 3D Gross-Pitaevskii equation, Comm. Math. Phys. 359 (2018), no. 1, 265–295. | DOI | MR | Zbl
[10] Stephen Gustafson, Kenji Nakanishi, and Tai-Peng Tsai, Scattering for the Gross-Pitaevskii equation, Math. Res. Lett. 13 (2006), no. 2-3, 273–285. | DOI | MR | Zbl
[11] —, Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math. 11 (2009), no. 4, 657–707. | DOI | MR | Zbl
[12] Mathieu Lewin and Julien Sabin, The Hartree equation for infinitely many particles, II : Dispersion and scattering in 2D, Anal. PDE 7 (2014), no. 6, 1339–1363. | DOI | MR | Zbl
[13] —, The Hartree equation for infinitely many particles, I : Well-posedness theory, Comm. Math. Phys. 334 (2015), no. 1, 117–170. | DOI | MR | Zbl
[14] Jens Linhard, On the properties of a gas of charged particles, Dan. Vid. Selsk Mat.-Fys. Medd. 28 (1954), no. 1, 8.
Cited by Sources: