En théorie des probabilités, les théorèmes de la limite locale donnent un développement asymptotique des puissances itérées d’une loi de probabilité supportée sur avec des estimations uniformes sur les termes de reste. Dans cette revue, nous présentons des résultats récents pour les convolutions itérées de suites complexes intégrables en une dimension d’espace. Dans le cas parabolique, nous donnons un développement complet, à tous les ordres, et nous obtenons une estimation ponctuelle précise des termes de reste sous forme de Gaussiennes généralisées. Nous présentons également une extension de notre résultat principal dans le cas semi-discret (problèmes continus en temps de convolution), et nous discutons plusieurs perspectives naturelles à ce travail.
In probability theory, local limit theorems provide an asymptotic expansion of the convolution powers of a probability distribution supported on with uniform bounds on the remainders. In this review, we present some recent results for the iterated convolution of complex valued integrable sequences in one space dimension. In the so-called parabolic case, we give a complete expansion, at any accuracy order, for these convolution powers and we provide sharp, pointwise, generalized Gaussian bounds for the remainders. We also present an extension of our main result to the semi-discrete setting (time-continuous convolution problems), and discuss several natural perspectives.
@incollection{JEDP_2024____A5_0, author = {Jean-Fran\c{c}ois Coulombel and Gr\'egory Faye}, title = {Local limit theorems for complex valued sequences: {Old} & {New}}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:5}, pages = {1--15}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2024}, doi = {10.5802/jedp.686}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.686/} }
TY - JOUR AU - Jean-François Coulombel AU - Grégory Faye TI - Local limit theorems for complex valued sequences: Old & New JO - Journées équations aux dérivées partielles N1 - talk:5 PY - 2024 SP - 1 EP - 15 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.686/ DO - 10.5802/jedp.686 LA - en ID - JEDP_2024____A5_0 ER -
%0 Journal Article %A Jean-François Coulombel %A Grégory Faye %T Local limit theorems for complex valued sequences: Old & New %J Journées équations aux dérivées partielles %Z talk:5 %D 2024 %P 1-15 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.686/ %R 10.5802/jedp.686 %G en %F JEDP_2024____A5_0
Jean-François Coulombel; Grégory Faye. Local limit theorems for complex valued sequences: Old & New. Journées équations aux dérivées partielles (2024), Exposé no. 5, 15 p. doi : 10.5802/jedp.686. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.686/
[1] M. Beck; H. J. Hupkes; B. Sandstede; K. Zumbrun Nonlinear stability of semidiscrete shocks for two-sided schemes, SIAM J. Math. Anal., Volume 42 (2010) no. 2, pp. 857-903 | DOI | MR
[2] S. Benzoni-Gavage; P. Huot; F. Rousset Nonlinear stability of semidiscrete shock waves, SIAM J. Math. Anal., Volume 35 (2003) no. 3, pp. 639-707 | DOI | MR
[3] A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates, Trans. Am. Math. Soc., Volume 49 (1941) no. 1, pp. 122-136 | DOI | MR
[4] C. Besse; G. Faye; J.-M. Roquejoffre; M. Zhang The logarithmic Bramson correction for Fisher-KPP equations on the lattice , Trans. Am. Math. Soc., Volume 376 (2023) no. 12, pp. 8553-8619 | MR
[5] D. Bouche; W. Weens Analyse quantitative des schémas numériques pour les équations aux dérivées partielles, EDP Sciences, 2024
[6] P. Brenner; V. Thomée; L. B. Wahlbin Besov spaces and applications to difference methods for initial value problems, Lecture Notes in Mathematics, 434, Springer, 1975 | DOI | MR | Zbl
[7] H. Q. Bui; E. Randles A Generalized Polar-Coordinate Integration Formula with Applications to the Study of Convolution Powers of Complex-Valued Functions on , J. Fourier Anal. Appl., Volume 28 (2022) no. 2, 19, 74 pages | Zbl
[8] L. Cœuret Local limit theorem for complex valued sequences, Asymptotic Anal. (2025) (Online First) | DOI
[9] L. Comtet Advanced combinatorics. The art of finite and infinite expansions, D. Reidel Publishing Co., 1974 | MR
[10] J.-F. Coulombel The Green’s function of the Lax-Wendroff and Beam-Warming schemes, Ann. Math. Blaise Pascal, Volume 29 (2022) no. 2, pp. 247-294 | DOI | Numdam | MR
[11] J.-F. Coulombel; G. Faye Generalized Gaussian bounds for discrete convolution powers, Rev. Mat. Iberoam., Volume 38 (2022) no. 5, pp. 1553-1604 | DOI | MR
[12] J.-F. Coulombel; G. Faye The local limit theorem for complex valued sequences: the parabolic case, C. R. Math., Volume 362 (2024), pp. 1801-1818 | DOI
[13] B. Després Finite volume transport schemes, Numer. Math., Volume 108 (2008) no. 4, pp. 529-556 | DOI | MR
[14] P. Diaconis; L. Saloff-Coste Convolution powers of complex functions on , Math. Nachr., Volume 287 (2014) no. 10, pp. 1106-1130 | DOI | MR
[15] K.-J. Engel; R. Nagel; S. Brendle One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, 2000 | MR | Zbl
[16] C. G. Esseen On the Liapounoff Limit of Error in the Theory of Probability, Ark. Mat. Astron. Fysik, A, Volume 28 (1942) no. 9, 9, 19 pages | MR
[17] T. N. E. Greville On stability of linear smoothing formulas, SIAM J. Numer. Anal., Volume 3 (1966) no. 1, pp. 157-170 | DOI | MR
[18] G. W. Hedstrom The near-stability of the Lax-Wendroff method, Numer. Math., Volume 7 (1965), pp. 73-77 | DOI | MR
[19] G. W. Hedstrom Norms of powers of absolutely convergent Fourier series, Mich. Math. J., Volume 13 (1966), pp. 393-416 | DOI | MR
[20] H. J. Hupkes; L. Morelli; W. M. Schouten-Straatman; E. S. Van Vleck Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations, Difference Equations and Discrete Dynamical Systems with Applications: 24th ICDEA, Dresden, Germany, May 21–25, 2018 24, Springer (2020), pp. 55-112 | DOI | MR
[21] G. F. Lawler; V. Limic Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, 123, Cambridge University Press, 2010 | MR
[22] P. D. Lax; R. D. Richtmyer Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., Volume 9 (1956), pp. 267-293 | DOI | MR
[23] P. D. Lax; B. Wendroff Systems of conservation laws, Commun. Pure Appl. Math., Volume 13 (1960), pp. 217-237 | DOI | MR
[24] D. J. Newman A simple proof of Wiener’s theorem, Proc. Am. Math. Soc., Volume 48 (1975), pp. 264-265 | MR
[25] V. V. Petrov Sums of independent random variables, Springer, 1975
[26] E. Randles Local limit theorems for complex functions on , J. Math. Anal. Appl., Volume 519 (2023) no. 2, 126832, 64 pages | DOI | MR
[27] E. Randles; L. Saloff-Coste On the convolution powers of complex functions on , J. Fourier Anal. Appl., Volume 21 (2015) no. 4, pp. 754-798 | DOI | MR
[28] E. Randles; L. Saloff-Coste Convolution powers of complex functions on , Rev. Mat. Iberoam., Volume 33 (2017) no. 3, pp. 1045-1121 | DOI | MR
[29] E. Randles; L. Saloff-Coste On-diagonal asymptotics for heat kernels of a class of inhomogeneous partial differential operators, J. Differ. Equations, Volume 363 (2023), pp. 67-125 | DOI | MR
[30] W. Rudin Real and complex analysis, McGraw-Hill, 1987 | MR
[31] I. J. Schoenberg On smoothing operations and their generating functions, Bull. Am. Math. Soc., Volume 59 (1953) no. 3, pp. 199-230 | DOI | MR
[32] V. Thomée Stability of difference schemes in the maximum-norm, J. Differ. Equations, Volume 1 (1965), pp. 273-292 | DOI | MR
Cité par Sources :