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Journées Équations aux dérivées partielles
Aussois, 19–23 juin 2024
RT AEDP (CNRS)

Local limit theorems for complex valued sequences:
Old & New

Jean-François Coulombel Grégory Faye

Historique et avancées récentes sur le théorème de la limite locale
Résumé

En théorie des probabilités, les théorèmes de la limite locale donnent un développement asympto-
tique des puissances itérées d’une loi de probabilité supportée sur Z avec des estimations uniformes
sur les termes de reste. Dans cette revue, nous présentons des résultats récents pour les convolutions
itérées de suites complexes intégrables en une dimension d’espace. Dans le cas parabolique, nous don-
nons un développement complet, à tous les ordres, et nous obtenons une estimation ponctuelle précise
des termes de reste sous forme de Gaussiennes généralisées. Nous présentons également une extension
de notre résultat principal dans le cas semi-discret (problèmes continus en temps de convolution), et
nous discutons plusieurs perspectives naturelles à ce travail.

Abstract

In probability theory, local limit theorems provide an asymptotic expansion of the convolution
powers of a probability distribution supported on Z with uniform bounds on the remainders. In
this review, we present some recent results for the iterated convolution of complex valued integrable
sequences in one space dimension. In the so-called parabolic case, we give a complete expansion, at any
accuracy order, for these convolution powers and we provide sharp, pointwise, generalized Gaussian
bounds for the remainders. We also present an extension of our main result to the semi-discrete setting
(time-continuous convolution problems), and discuss several natural perspectives.

1. Introduction

For a given integrable complex valued sequence a ∈ ℓ1(Z;C), we define iteratively:
∀ n ∈ N∗ , a(n+1) := a(n) ⋆ a ,

with the initialization a(1) := a. Here, the notation ⋆ stands for the convolution between sequences.
More precisely, for any a = (aℓ)ℓ∈Z ∈ ℓ1(Z;C) and b = (bℓ)ℓ∈Z ∈ ℓ1(Z;C), the convolution a ⋆ b is
given by

∀ ℓ ∈ Z , (a ⋆ b)ℓ :=
∑
ℓ′∈Z

aℓ−ℓ′ bℓ′ .

The celebrated Young’s inequality ensures that the above convolution a ⋆ b is well defined for
any a ∈ ℓ1(Z;C) and b ∈ ℓ1(Z;C), and also belongs to ℓ1(Z;C), which endows this space with a
Banach algebra structure. Our aim is to present a brief survey on recent results on the study of
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some classes of geometric sequences in this algebra and, more specifically, develop on those results
which provide sharp pointwise estimates on the sequence a(n) for all n ∈ N∗. As we shall see later
on, this problem is connected with the large time behavior of finite difference approximations for
evolutionary partial differential equations, which is our main motivation for studying this problem.

When the sequence a is a finitely supported probability distribution, that is, when it is real non
negative, satisfies the normalization condition∑

ℓ∈Z
aℓ = 1,

and only finitely many aℓ’s are nonzero, the asymptotic behavior of a(n) for large values of n is well-
known, and is described by the so-called local limit theorem in probability theory [25, Chapter VII].
Indeed, in that setting, for each ℓ ∈ Z, the coefficient aℓ corresponds to the probability P(X = ℓ)
where X is a given random variable with values in Z. If X1, . . . , Xn, . . . are independent, identically
distributed, random variables following the same law as X with distribution given by a, then the
probability that the random walk X1 + · · · + Xn is at lattice site ℓ corresponds to the value at the
index ℓ of the iterated convolution (n − 1)-times of the sequence a. That is we have the relation

a
(n)
ℓ = P(X1 + · · · + Xn = ℓ),

for all n ∈ N∗ and ℓ ∈ Z. Assuming that the sequence a possesses at least two nonzero elements and
is aperiodic1, the local limit theorem provides the existence of a sequence of real valued functions
Qm : R → R indexed by m ∈ N∗ such that for all M ∈ N∗:

a
(n)
ℓ − 1√

2πσ2n
exp

(
−

x2
n,ℓ

2

)
−

M∑
m=1

Qm(xn,ℓ)
n(m+1)/2 =

n→+∞
o

(
1

n(M+1)/2

)
, xn,ℓ := ℓ − αn

σ
√

n
, (1.1)

where α :=
∑

ℓ∈Z ℓaℓ and σ2 :=
∑

ℓ∈Z ℓ2aℓ − α2 > 0 are respectively the mean and the variance of
the random variable X1 with probability distribution a. In the above asymptotic expansion, the
error term is understood to be uniform with respect to ℓ ∈ Z. In fact, each term Qm appearing in
the expansion can be explicitly computed as a linear combination of derivatives of the Gaussian
function x 7→ exp

(
− x2

2

)
and can thus be expressed by using Hermite polynomials. We refer to [25,

Chapter VII] for more details.
Over the past decades, there has been a long series of work that have studied the generalization

of the local limit theorem to the case where the sequence a is complex valued [8, 11, 12, 13, 14, 17,
19, 26, 27, 28, 31, 32] and thus dropping the positivity assumption of the probabilistic framework.
Beyond its own analytical interest, this problem is particularly relevant for instance when one
studies the large time behavior of finite difference approximation of evolution equations [13, 19, 32]
or data smoothing problems [17, 31]. We also point to the recent article [14] which gives a large
overview of examples where this issue is meaningful. In numerical analysis, when one discretizes
by means of a finite difference scheme an evolutionary linear partial differential equation2 set on
the real line R, one is let to study problems of the form

∀ n ∈ N , un+1 = a ⋆ un,

for a given initial sequence u0, and a that now encodes the properties of the finite difference scheme.
Assuming that a ∈ ℓ1(Z;C), which is typically satisfied when the stencil of the scheme is finite,
one can define the linear convolution operator La : u 7→ a ⋆ u which acts boundedly on ℓq(Z;C)
for any q ∈ [1, +∞]. Using the morphism property La ◦ Lb = La⋆b, one has (La)n = La(n) for
all n ∈ N∗, such that Young’s inequality gives

∥un∥ℓ∞ =
∥∥La(n)u0∥∥

ℓ∞ =
∥∥∥a(n) ⋆ u0

∥∥∥
ℓ∞

≤
∥∥∥a(n)

∥∥∥
ℓ1

∥∥u0∥∥
ℓ∞ .

One then deduces that a sufficient condition3 for the stability of the numerical scheme in the
maximum norm, which reads as

sup
n∈N

|||La(n) |||ℓ∞→ℓ∞ < +∞,

1We refer to [21] for the definition of aperiodicity.
2The transport equation or the heat equation are typical examples.
3It is actually a necessary and sufficient condition, see [32].
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is given by the boundedness of the sequence
(∥∥a(n)

∥∥
ℓ1

)
n∈N. Proving such boundedness is typically

achieved by obtaining pointwise bounds on the iterates a(n), see [11, 32].
As expected (see [8, 11, 12, 27] for many illustrations), a much larger variety of possible behaviors

is obtained by dropping the positivity assumption which correspond, in the language of partial
differential equations, either to parabolic or dispersive behaviors. In this review, we shall only focus
on the parabolic case, which is referred to as the stable case in [32]. This is precisely the situation
where the iterated convolutions will be bounded in the ℓ1 norm. A fundamental result obtained
by Randles and Saloff-Coste [27] is a generalization of the local limit theorem for a large class
of complex valued sequences with finite support and the identification of the leading order term
of an asymptotic expansion similar to (1.1), which is referred to as the attractor in [27]. Very
recently, for the same class of finitely supported complex valued sequences, Coeuret [8] has proved
a generalization of the asymptotic expansion (1.1) together with the derivation of a sharp rate
of convergence in the form a generalized Gaussian bound for the remainder of this new-found
asymptotic expansion. In the probability framework discussed above, the main result of [8] ensures
that for any sequence a which is a finitely supported probability distribution with at least two
nonzero elements and aperiodic, for any M ∈ N∗ there exist two positive real constants CM > 0
and cM > 0 such that

∀ (n, ℓ) ∈ N∗ × Z ,

∣∣∣∣∣a(n)
ℓ − 1√

2πσ2n
exp

(
−

x2
n,ℓ

2

)
−

M∑
m=1

Qm(xn,ℓ)
n(m+1)/2

∣∣∣∣∣
≤ CM

n(M+2)/2 exp
(

−cM

x2
n,ℓ

2

)
.

Such a quantified asymptotic expansion already proves very useful in probability theory since it
allows to very easily retrieve (a non-optimal version of) the well-known Berry–Esseen inequality [3,
16].

All, the results in the above mentioned references [8, 14, 27] contain either technical restrictions
on the class of complex sequences a considered, typically on the Fourier transform4 of a, and/or
did not provide sharp enough estimates for the remainders. In our recent contribution [12], we
have managed to drop all previous technical restrictions and derive an asymptotic expansion up
to any order with a sharp, generalized Gaussian estimate for the remainders. More precisely, we
shall consider, from now on, complex valued sequences which satisfy the following assumption.

Assumption 1 (Holomorphy). The sequence a = (aℓ)ℓ∈Z belongs to ℓ1(Z;C) and its associated
Fourier series:

Fa : ζ ∈ C 7−→
∑
ℓ∈Z

aℓ ζℓ ,

defines a holomorphic function on an annulus {ζ ∈ C | 1 − ε < |ζ| < 1 + ε} for some ε > 0.
Furthermore, there holds:

sup
κ∈S1

|Fa(κ)| = 1 .

In numerical analysis, the latter normalization for the maximum of |Fa| on the unit circle
corresponds to the so-called von Neumann stability condition [22], and it is made in order to avoid
introducing additional terms in the main result below. Up to multiplying the sequence a by some
positive number, one can always fix the maximum to 1. Lets us also note that thanks to Cauchy’s
formula [30], the holomorphy of Fa on an annulus that contains the unit circle S1 is equivalent to
the exponential localization of the sequence a, that is the existence of a positive constant c such
that:

sup
ℓ∈Z

ec |ℓ| |aℓ| < +∞ .

Given a sequence a that satisfies Assumption 1, it is well-known [6, 11] that one of the following
two alternatives is satisfied. Either Fa(κ) has modulus 1 for any κ ∈ S1 (e.g. Fa is a Blaschke
product [30]). Or, there exists a finite set of pairwise distinct points on the unit circle S1 such
that Fa has modulus 1 precisely at these points. The reader interested in the first alternative may

4This function is referred to as the characteristic function in probability theory, see [25].

V–3



consult [19] and [6, Theorem 3.1]. From now on, we shall place ourselves in the second case and
make the following assumption.

Assumption 2 (Tangency). Let the sequence a satisfy Assumption 1. We assume that there exists
a finite set of pairwise distinct points {κ1, . . . , κK}, K ≥ 1, in S1 such that Fa(κk) has modulus 1
for any k ∈ {1, . . . , K} and:

∀ κ ∈ S1 \
{

κ1, . . . , κK

}
,
∣∣Fa(κ)

∣∣ < 1 .

The points Fa(κk) will be referred to the tangency points since these are the points where the
curve5 {Fa(κ) | κ ∈ S1} meets the unit circle S1. Our third and last assumption describes the
behavior of the asymptotic expansion of Fa near the tangency points κk, and it will be in this
assumption that will be encoded the parabolic nature of the sequence a already mentioned above.

Assumption 3 (Parabolicity). Let the sequence a satisfy Assumption 1 and Assumption 2. More-
over, at any point κk ∈ S1, k ∈ {1, . . . , K}, where the modulus of Fa attains the value 1, there
exists a real number αk, a complex number βk with positive real part and a nonzero integer µk ∈ N∗

such that, as the complex number ξ tends to zero, there holds:

Fa

(
κk ei ξ

)
= Fa(κk) exp

(
i αk ξ − βk ξ2 µk + O(ξ2 µk+1)

)
. (1.2)

Using Assumptions 1, 2 and 3, we consider a point κk ∈ S1 where |Fa(κk)| = 1. For any
sufficiently small ξ ∈ C, we can write Fa

(
κk ei ξ

)
as the following convergent power series:

Fa

(
κk ei ξ

)
= Fa(κk) exp

i αk ξ − βk ξ2 µk +
∑

ν≥2 µk+1

γk,ν

ν ! (i ξ)ν

 , (1.3)

where the coefficients γk,ν play the role of cumulants in probability theory. Following Petrov [25],
we expand a power series in two variables (Y, Z) as follows:

exp

∑
ν≥1

γk,2 µk+ν

(2 µk + ν) ! Y 2 µk+ν Zν

 = 1 +
∑
m≥1

Pk,m(Y ) Zm , (1.4)

where the Pk,m’s are polynomials with complex coefficients that depend on the cumulants γk,ν (see
several formulas below based on the Faà di Bruno formula [9]).

In order to state the main result of [12], we also need to define the aforementioned attractors
of [27]. For any nonzero integer µ ∈ N∗ and for any complex number β with positive real part, we
introduce the function:

Hβ
2 µ : x ∈ R 7−→ 1

2 π

∫
R

e−i x θ e−β θ2 µ

dθ . (1.5)

The only properties that we shall need on these attractors is the fact for any β with positive real
part and µ ∈ N∗, the function Hβ

2µ has super-exponential decay at infinity as well as its derivatives:

∀ N ∈ N , ∃ C > 0 , ∀ x ∈ R ,
∣∣∣Hβ

2 µ(x)
∣∣∣+ · · · +

∣∣∣(Hβ
2 µ)(N)(x)

∣∣∣ ≤ C exp
(

− 1
C

|x|
2 µ

2 µ−1

)
.

With the above notations, our main result reads as follows.

Theorem 1 (Local limit theorem from [12]). Let the sequence a satisfy Assumptions 1, 2 and 3.
Then there exist an integer L ∈ N∗ and some positive constant c0 > 0 such that for any n ∈ N∗

and ℓ ∈ Z with |ℓ| > L n, there holds:∣∣∣a(n)
ℓ

∣∣∣ ≤ exp(−c0 n − c0 |ℓ|) . (1.6)

5Because of Assumption 1, this curve is located inside the closed unit disk.
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Moreover, for any integer M ∈ N, there exist some positive constants CM and cM (that depend on
M and a) such that the following holds: for any n ∈ N∗ and ℓ ∈ Z with |ℓ| ≤ L n, there holds:∣∣∣∣∣a(n)

ℓ −
K∑

k=1

κ−ℓ
k Fa(κk)n

n1/(2 µk) Hβk

2 µk

(
ℓ − αkn

n1/(2 µk)

)

−
K∑

k=1

M∑
m=1

κ−ℓ
k Fa(κk)n

n(m+1)/(2 µk)

(
Pk,m(−d/dx)Hβk

2 µk

)( ℓ − αkn

n1/(2 µk)

)∣∣∣∣∣
≤ CM

K∑
k=1

1
n(M+2)/(2 µk) exp

−cM

(
|ℓ − αk n|
n1/(2 µk)

) 2 µk
2 µk−1

 , (1.7)

where the polynomials Pk,m are defined in (1.4).

We already make a first comment regarding the statement of Theorem 1. Since by Assumption 1
the Fourier series Fa is only assumed to be holomorphic on a given annulus which contains the
unit circle S1, which we recall equivalently means that the sequence a is exponentially localized,
then, for a fixed n, the decay at infinity of a

(n)
ℓ is at best exponential. This is exactly the result of

our first estimate (1.6). Nevertheless, if one further assumes that a is finitely supported, then Fa

is a trigonometric polynomial on S1, and in that case, one can prove (see [8]), that our generalized
Gaussian bound (1.7) holds not only in the large sector {ℓ ∈ Z | |ℓ| ≤ Ln} but for all ℓ ∈ Z.

Let us come back to our initial example where the sequence a is a finitely supported proba-
bility distribution with a least two nonzero elements and aperiodic. Since the sequence is finitely
supported, has only positive elements which sum to 1, Assumption 1 is therefore satisfied. Fur-
thermore, since a has at least two nonzero elements, Fa(κ) cannot have modulus 1 for any κ ∈ S1

for otherwise the sequence a would have a single nonzero element equal to 1. As a consequence,
Assumption 2 is also satisfied. The aperiodicity of a implies that Fa has modulus 1 only at κ = 1
for κ ∈ S1, that is K = 1 in the notation of Assumption 2. The asymptotic expansion (1.2) is
verified with α1 = α the mean of the random variable X, µ1 = 1 and 2β1 = σ2 with σ2 > 0 the
variance of X, namely one has

Fa

(
ei ξ
)

=
ξ→0

exp
(

i α ξ − σ2

2 ξ2 + O(ξ3)
)

.

From the definition (1.5), we compute:

∀ x ∈ R , H
σ2
2

2 (x) = 1√
2πσ2

exp
(

− x2

2 σ2

)
.

As a consequence, the asymptotic expansion provided by Theorem 1 reads:

a
(n)
ℓ ∼ 1√

2πσ2n
exp

(
− (ℓ − αn)2

2σ2n

)
+
∑
m≥1

1
n(m+1)/2

(
P1,m(−d/dx)H

σ2
2

2

)(
ℓ − αn√

n

)
,

which precisely coincides with (1.1), since
(

P1,m(−d/dx)H
σ2
2

2

)(
ℓ − αn√

n

)
can be shown to be equal

to Qm(xn,ℓ) given in [25]. For instance, we shall see below that the polynomial P1,1 is given by:

P1,1(X) = γ1,3

3 ! X3 ,

where γ1,3 is the cumulant of order 3 at the zero frequency, see (1.3). This means that the two first
terms (M = 1) in the expansion (1.7) are:

1√
2πσ2n

exp
(

− (ℓ − αn)2

2σ2n

)
− γ1,3

3 ! n

(
H

σ2
2

2

)′′′(
ℓ − αn√

n

)
,

and these two first terms can be rewritten as:
1√

2 πσ2n
exp

(
−

x2
n,ℓ

2

)
− γ1,3

3 ! σ3 n
(x3

n,ℓ − 3xn,ℓ)
1√

2 πσ2
exp

(
−

x2
n,ℓ

2

)
,

with xn,ℓ = ℓ − α n

σ
√

n
, which is with the expression in [25, Theorem 13, p. 205].
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Next, coming back to the numerical analysis framework, for a given sequence a satisfying As-
sumptions 1, 2 and 3, an immediate consequence of Theorem 1 is the following explicit expression
for the large time asymptotic of the iterates La(n)u0 = a(n) ⋆ u0 of the numerical scheme for any
initial condition u0 ∈ ℓq(Z;C) with q ∈ [1, +∞]. More specifically, for any integer M ∈ N, there
exists some positive constant CM such that for any u0 ∈ ℓq(Z;C) there holds:∥∥∥∥∥a(n) ⋆ u0 −

K∑
k=1

κ−ℓ
k Fa(κk)n

n1/(2 µk) Hβk

2µk

(
· − αkn

n1/(2 µk)

)
⋆ u0

−
M∑

m=1

K∑
k=1

κ−ℓ
k Fa(κk)n

n(m+1)/(2 µk)

(
Pk,m(−d/dx)Hβk

2µk

)( · − αkn

n1/(2 µk)

)
⋆ u0

∥∥∥∥∥
ℓq

≤ CM ∥u0∥ℓq

n(M+1)/(2 µ) ,

with µ := maxk µk. The generalized Gaussian bound on the remainder terms obtained in Theorem 1
is thus crucial in the derivation of the above estimate. Indeed, uniform bounds such as the one
previously derived in the literature [25, 27] (see (1.1) in the probability case) would not have
allowed to obtain such an estimate.

As already emphasized, some analogues of Theorem 1 have been proved in [8, 11, 27], but with
either some restrictions on the number of tangency points and/or the drifts, and/or the number
of terms in the expansion (1.7). To our best knowledge, it seems that our framework is the most
general so far when it comes to consider sequences a whose Fourier series Fa enjoys an asymptotic
expansion of the form (1.3) at each tangency point. Maybe, the main restriction that we manage to
lift is the fact that we do not necessarily consider sequences with finite support. Let us remark that
sequences satisfying Assumptions 1, 2 and 3 of Theorem 1 with infinite support naturally arise in
the study of implicit schemes in numerical analysis. An implicit discretization of an evolutionary
linear partial differential equation by means of finite differences in space yields recurrence relations
of the form

∀ n ∈ N , b ⋆ un+1 = c ⋆ un,

where b and c are two finitely supported sequences, and we assume that the sequence b contains
at least two nonzero elements. Upon assuming that b is invertible on ℓ1(Z;C) for the convolution,
which thanks to the Wiener–Levy theorem [24] is equivalent to the fact that

∀ κ ∈ S1 , Fb(κ) =
∑
ℓ∈Z

bℓκ
ℓ ̸= 0,

then one can rewrite the numerical scheme in the form un+1 = a ⋆ un with a := b−1 ⋆ c ∈ ℓ1(Z;C)
which has an infinite support. We refer the interested reader to [11, Section 4.2] for an example in
such a setting.

In the following Section 2, we present the main ideas towards the proof of Theorem 1. Finally,
we conclude in Section 3 by presenting some natural extensions and perspectives related to this
work.

2. Sketch of the proof of Theorem 1

The proof of Theorem 1 naturally splits into two parts corresponding to the two regimes leading
to estimates (1.6) and (1.7). Nevertheless, the starting point of the analysis in both cases is the
following key expression for the coefficient a

(n)
ℓ which is obtained by inverse Fourier transform

∀ (n, ℓ) ∈ N∗ × Z , a
(n)
ℓ = 1

2 π

∫ π

−π

e−i ℓ θ Fa

(
ei θ
)n dθ . (2.1)

In the above expression, we will make use of the crucial holomorphy hypothesis of Assumption 1
to deform appropriately the integral in the complex plane (within the domain of holomorphy of Fa

which is a given annulus around the unit circle S1). The type of deformations will typically depend
on the regime considered for (n, ℓ), and more importantly, we may allow the contours to depend
on (n, ℓ).

In the far field regime, that is when the ratio |ℓ|/n is large, the idea is to integrate along a circle
with radius either strictly larger or smaller than 1 depending on the sign of ℓ, and that remains in
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the annulus {ζ ∈ C | 1 − ε < |ζ| < 1 + ε} for some ε > 0 provided by Assumption 1. Assume for
example that ℓ > 0. We set ϱ := ln(1 + ε/2), with ε > 0, and Cauchy’s formula readily gives

a
(n)
ℓ = 1

2 π

∫ π

−π

e−ℓ ϱe−i ℓ θ Fa

(
ei (θ−i ϱ)

)n

dθ .

If Cϱ > 0 denotes the following constant

Cϱ := sup
θ∈[−π,π]

∣∣∣Fa

(
ei (θ−i ϱ)

)∣∣∣ ,
then one gets the bound

∀ (n, ℓ) ∈ N∗ × Z ,
∣∣∣a(n)

ℓ

∣∣∣ ≤ exp (−δℓ + Cϱn) .

Upon denoting by ⌊·⌋ the greatest integer function, we let L :=
⌊

2Cϱ

ϱ

⌋
, and for all ℓ ≥ Ln, we thus

have ∣∣∣a(n)
ℓ

∣∣∣ ≤ exp
(

−ϱ

2 ℓ
)

≤ exp
(

−ϱ

4 ℓ − ϱL

4 n

)
,

which proves (1.6) for ℓ > 0 (the case ℓ < 0 is handled similarly). So from now on we only consider
those values of ℓ ∈ Z for which |ℓ| ≤ Ln with n ∈ N∗.

One of the main task in proving estimate (1.7) of Theorem 1 is to make appear each term of the
expansion involving the attractors and the polynomials Pk,m. In order to lighten the presentation
and the notations, we shall only consider the case where there is a single tangency point for Fa,
that is K = 1 in Assumption 2, and drop the subscript 1 in our notation. Thus, we have a unique
κ = exp(iθ) with θ ∈ [0, 2π) such that |Fa(κ)| = 1, and for all sufficiently small ξ ∈ C, we can
write the convergent power series

Fa

(
κ ei ξ

)
= Fa(κ) exp

i α ξ − β ξ2 µ +
∑

ν≥2µ+1

γν

ν! (iξ)ν

 ,

with α ∈ R, β ∈ C with Re(β) > 0, µ ≥ 1 an integer and cumulants γν ∈ C. From (1.4), we get
the existence of complex polynomials Pm defined via

exp

∑
ν≥1

γ2 µ+ν

(2 µ + ν) ! Y 2 µ+ν Zν

 = 1 +
∑
m≥1

Pm(Y ) Zm .

With these notations at hand, we let δ > 0 be a small positive real number that shall be fixed at
some point in the proof, and θ0 ∈ R such that exp(iθ0) does not belong to the arc

{
κeiθ | θ ∈ [−δ, δ]

}
of the unit circle and θ ∈ [θ0, θ0 + 2π]. We start once again with (2.1) and write

a
(n)
ℓ = 1

2 π

∫ θ0+2π

θ0

e−i ℓ θ Fa

(
ei θ
)n dθ ,

and then we further split the integral as

a
(n)
ℓ = 1

2 π

∫ θ−δ

θ0

e−i ℓ θ Fa

(
ei θ
)n dθ + 1

2 π

∫ θ+δ

θ−δ

e−i ℓ θ Fa

(
ei θ
)n dθ

+ 1
2 π

∫ θ0+2π

θ+δ

e−i ℓ θ Fa

(
ei θ
)n dθ.

From Assumption 2, we note that

∀ θ ∈ [θ0, θ − δ] ∪ [θ + δ, θ0 + 2π] ,
∣∣Fa

(
ei θ
)∣∣ < 1,

such that there exists c > 0 so that we get∣∣∣∣∣a(n)
ℓ − κ−ℓFa(κ)n

2 π

∫ δ

−δ

e−i ℓ θ
(
Fa(κ)−1Fa

(
κei θ

))n dθ

∣∣∣∣∣ ≤ e−cn ,
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where we have performed a change of variables to shift the interval in θ in the remaining integral.
We can then substitute the above convergent power series into the expression to obtain∣∣∣∣∣∣a(n)

ℓ − κ−ℓFa(κ)n

2 π

∫ δ

−δ

e−i (ℓ−nα) θ e−nβθ2µ

exp

n
∑

ν≥2µ+1

γν

ν! (iθ)ν

 dθ

∣∣∣∣∣∣ ≤ e−cn .

Next, we perform a parabolic rescaling in the integral via θ → θ/n
1

2µ , so that we get∣∣∣∣∣∣a(n)
ℓ − κ−ℓFa(κ)n

2 π n
1

2µ

∫ δ/n
1

2µ

−δ/n
1

2µ

e−i ω θ e−βθ2µ

exp

(iθ)2µ
∑
ν≥1

γ2µ+ν

(2µ + ν)!

(
iθ

n
1

2µ

)ν
 dθ

∣∣∣∣∣∣
≤ e−cn , with ω := ℓ − αn

n
1

2µ

.

The above form of the integral motivates the introduction of the following complex valued function
of two arguments:

g(w, z) := exp

w2µ
∑
ν≥1

γ2µ+ν

(2µ + ν)! zν

 ,

where we recognize that

exp

(iθ)2µ
∑
ν≥1

γ2µ+ν

(2µ + ν)!

(
iθ

n
1

2µ

)ν
 = g

(
iθ,

iθ
n

1
2µ

)
.

Let us already remark that thanks to the holomorphy of Fa on the annulus {ζ ∈ C | 1 − ε < |ζ| <
1 + ε}, there exists δ0 > 0 small enough such that g is holomorphic on C× B(0, δ0) where B(0, δ0)
denotes the open disk in the complex plane centered at the origin and of radius δ0 > 0. The next
step will now be to approximate g by its Taylor expansion. More precisely, upon assuming that δ
at least satisfies δ ∈ (0, δ0), for any M ∈ N∗, we obtain∣∣∣∣∣∣a(n)

ℓ − κ−ℓFa(κ)n

2 π n
1

2µ

∫ δ/n
1

2µ

−δ/n
1

2µ

e−i ω θ e−βθ2µ
M∑

m=0

(iθ)m

nm/2µ m!
∂mg

∂zm
(iθ, 0) dθ

∣∣∣∣∣∣ ≤ e−cn +
∣∣E 1

n,ℓ

∣∣ ,
where the error term is defined as

E 1
n,ℓ := κ−ℓFa(κ)n

2 π n
1

2µ

∫ δ/n
1

2µ

−δ/n
1

2µ

e−i ω θ e−βθ2µ

×

(
g

(
iθ,

iθ
n

1
2µ

)
−

M∑
m=0

(iθ)m

nm/2µ m!
∂mg

∂zm
(iθ, 0)

)
dθ.

We shall come back to the estimate of the error term E 1
n,ℓ later on, and we first finish to obtain

our complete expansion which involves the attractors Hβ
2µ and their derivatives.

Inspecting at the definition (1.5), it is then natural to approximate the integral on the large
segment [−δ/n

1
2µ , δ/n

1
2µ ] by an integral over the whole real line R. Using once more the triangle

inequality yields∣∣∣∣∣a(n)
ℓ − κ−ℓFa(κ)n

2 π n
1

2µ

∫
R

e−i ω θ e−βθ2µ
M∑

m=0

(iθ)m

nm/2µ m!
∂mg

∂zm
(iθ, 0) dθ

∣∣∣∣∣ ≤ e−cn +
∣∣E 1

n,ℓ

∣∣ +
∣∣E 2

n,ℓ

∣∣ ,
where the new error term is given by

E 2
n,ℓ := κ−ℓFa(κ)n

2 π n
1

2µ

∫
R\[−δ/n

1
2µ ,δ/n

1
2µ ]

e−i ω θ e−βθ2µ
M∑

m=0

(iθ)m

nm/2µ m!
∂mg

∂zm
(iθ, 0) dθ .

Delaying once again the derivation of an estimate for E 2
n,ℓ, it only remains to link the polynomials

Pm to the function g and its partial derivatives. The key observation is the following identity

∀ m ≥ 1 , ∀ w ∈ C , Pm(w) = wm

m!
∂mg

∂zm
(w, 0) , (2.2)
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which can be easily verified from the definition (1.4) of Pm. If ν = (ν1, ν2, . . . ) denotes a finitely
supported integer valued sequence, we shall introduce the following notations:

⟨ν⟩ :=
∑
ℓ≥1

ℓ νℓ , |ν| :=
∑
ℓ≥1

νℓ , ν ! :=
∏
ℓ≥1

νℓ ! ,

which all make sense for finitely supported sequences as we consider here. Then, combining the
expression (2.2) obtained on the polynomials Pm and the Faà di Bruno formula, we obtain:

∀ m ∈ N , Pm(Y ) = Y m
∑

⟨ν⟩=m

Y 2 µ |ν|

ν !
∏
ℓ≥1

(
γ2 µ+ℓ

(2 µ + ℓ) !

)νℓ

, (2.3)

which is the same expression as in [25, Chapter VII]. For instance, we have in particular P0(X) = 1
and

P1(X) = γ2 µ+1

(2 µ + 1) ! X2 µ+1 ,

which for µ = 1 justifies the formula we had already postulated for our probability example. So,
using (2.3) into our last estimate of a

(n)
ℓ together with the properties of the Fourier transform, we

have finally obtained∣∣∣∣∣a(n)
ℓ −

M∑
m=0

κ−ℓFa(κ)n

n(m+1)/2µ

(
Pm

(
− d

dx

)
Hβ

2µ

)
(ω)

∣∣∣∣∣ ≤ e−cn +
∣∣E 1

n,ℓ

∣∣ +
∣∣E 2

n,ℓ

∣∣ ,
which gives precisely the terms of the asymptotic expansion (1.7). To conclude the proof it thus
remains to obtain sharp generalized Gaussian estimates for the two error terms.

Let us first notice that the second error term E 2
n,ℓ is easily handled by observing that

∣∣E 2
n,ℓ

∣∣ ≤
M∑

m=0

1
2 π n(m+1)/2µ

∫
R\[−δ/n

1
2µ ,δ/n

1
2µ ]

e− Re(β)θ2µ

|Pm(iθ)| dθ ≤ Ce−cn,

for some positive constants C > 0 and c > 0 that do not depend on n and ℓ.
Before handling the error term E 1

n,ℓ, let us first note that the holomorphy of g ensures the
existence of two constants C > 0 and C0 > 06 together with δ̂ ∈ (0, δ0) such that there holds∣∣∣∣∣g(w, z) −

M∑
m=0

∂mg

∂zm
(w, 0) zm

m !

∣∣∣∣∣ ≤ C |z|M+1 exp
(

Re(β)
2 (Re w)2 µ + C0 (Im w)2 µ

)
, (2.4)

for all (w, z) ∈ C × C(0, δ̂) where C(0, δ̂) =
{

z ∈ C
∣∣max(|Re z|, Im z) < δ̂

}
. And so, we can now

fix once for all δ as δ = δ̂/2 which justifies all our previous computations.
The final strategy is to use a well-chosen contour in order to derive a sharp bound for E 1

n,ℓ.
Without loss of generality, we may assume that ω ≥ 0, the argument being similar when it is
negative, and we consider the contour depicted in Figure 2.1 where the constant Ξ appearing there
is defined as

Ξ :=



(
ω

4 µ C0

) 1
2 µ−1

, if ω

4 µ C0
≤ δ2 µ−1 n

2 µ−1
2 µ ,

δ n1/(2 µ) , if ω

4 µ C0
≥ δ2 µ−1 n

2 µ−1
2 µ .

(2.5)

Consequently, with the above definition, for any z on the contour that is depicted in blue in
Figure 2.1, we have max(|Re z|, |Im z|)/n

1
2µ ≤ δ and we shall therefore be able to apply Cauchy’s

formula for holomorphic functions and also use the estimate (2.4). And Cauchy’s formula gives:∫ δ n
1

2µ

−δ n
1

2µ

e−i ω θ e−β θ2 µ

(
g

(
i θ,

i θ

n
1

2µ

)
−

M∑
m=0

(i θ)m

m ! n
m
2µ

∂mg

∂zm
(i θ, 0)

)
dθ = E 1,1

n,ℓ + E 1,2
n,ℓ + E 3

n,ℓ ,

6The constant C0 > 0 can be chosen such that for all u ∈ C, there also holds Re(βu2µ) ≥
Re(β)

2
(Re u)2µ −

C0(Im u)2µ.
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−δ n
1

2µ δ n
1

2µ0

E 1,1
n,ℓ E 1,2

n,ℓ

E 3
n,ℓ

−i Ξ

C

• •

• •

Figure 2.1: The integration contour in the case ω ≥ 0 (in blue). The bullets
correspond to the endpoints of the three segments that define the new contour.
The initial contour is depicted in black. Each new integral appears in red.

where E 1,1
n,ℓ , resp. E 1,2

n,ℓ , corresponds to the integral on the left, resp. right, vertical segment, and
E 3

n,ℓ corresponds to the integral on the horizontal segment (see Figure 2.1). Both integrals along
the vertical segments contribute to exponentially decaying terms as it can be noticed by direct
computations of the form∣∣∣E 1,1

n,ℓ

∣∣∣ +
∣∣∣E 1,2

n,ℓ

∣∣∣ ≤ C e−cn

∫ Ξ

0
exp

(
−2µ − 1

2µ
ω u

)
du ≤ C Ξ e−cn ≤ C̃e−c̃n,

since Ξ ≤ δn
1

2µ . For the last contribution, using the definition of Ξ, we obtain the bound

∣∣E 3
n,ℓ

∣∣ ≤ C exp
(
−ω Ξ + 2C0 Ξ2 µ

) ∫ δ n1/2 µ

−δ n1/2 µ

e− Re(β)
2 θ2 µ |θ − i Ξ|M+1

n(M+1)/2µ
dθ

≤ C

(
1 + ΞM+1)
n(M+1)/2µ

exp
(

−2µ − 1
2µ

ω Ξ
)

.

In the first regime of (2.5), we readily get our desired generalized Gaussian estimate:∣∣E 3
n,ℓ

∣∣ ≤ C

n(M+1)/2µ
exp

(
−c ω

2µ
2µ−1

)
,

while in second regime we simply get an exponential bound∣∣E 3
n,ℓ

∣∣ ≤ Ce−cn,

which implies the estimate

∣∣E 3
n,ℓ

∣∣ ≤ Ce−cn + C

n(M+1)/2µ
exp

(
−c

(
|ℓ − αn|

n
1

2µ

) 2µ
2µ−1

)
,

that holds for any (n, ℓ) ∈ N∗ × Z. To conclude the proof it only remains to check that the
exponentially small terms in n can be absorbed into the generalized bound. This can always be
achieved when |ℓ| ≤ Ln, and the proof of Theorem 1 is thus complete.

3. Some extensions and perspectives

We now discuss some extensions and possible perspectives related to Theorem 1.
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3.1. The semi-discrete case
For a given sequence b ∈ ℓ1(Z;C), we consider linear evolution problems of the form

∀ t > 0 , u′(t) = b ⋆ u(t) , (3.1)

where u′(t) stand for the time derivate of the sequence valued function u : t 7→ u(t) = (uℓ(t))ℓ∈Z,
that is

∀ (t, ℓ) ∈ R∗
+ × Z , (u′(t))ℓ = duℓ

dt
(t) .

Such a class of evolution problems naturally arise in numerical analysis as the semi-discretization
in space of linear partial differential equations by means of finite differences schemes [1, 2], in
probability for the study of continuous-time random walks [21] or in some applications in biology
(e.g. spreading of agents on a lattice [4, 20]). Since the operator Lb : u 7→ b ⋆ u is a bounded
operator on any ℓq(Z;C) with q ∈ [1, +∞], it is the infinitesimal generator of a uniformly continuous
semigroup acting on any ℓq(Z;C) that we shall denote by (Sb(t))t>0 and whose action on ℓq(Z;C)
can be expressed as (see [15]):

∀ t > 0 , Sb(t) : u 7→ Sb(t)u =
+∞∑
n=0

tn

n!b
(n) ⋆ u.

The above series is indeed uniformly convergent for any u ∈ ℓq(Z;C), and for all t > 0 we have the
crude uniform bound

|||Sb(t)|||ℓq→ℓq ≤ et∥b∥ℓ1 .

We are interested in deriving a precise pointwise asymptotic expansion of the Green’s function asso-
ciated to the semi-group (Sb(t))t>0 which is defined as follows. For any sequence u0 ∈ ℓq(Z;C) with
q ∈ [1, +∞], there exists a unique global solution u ∈ C 0([0, +∞); ℓq(Z;C))∩C 1((0, +∞); ℓq(Z;C))
of (3.1) which initially satisfies u(0) = u0. This solution is explicitly given through the following
representation formula

∀ t > 0 , u(t) = Sb(t)u0 =
+∞∑
n=0

tn

n! b(n) ⋆ u0.

The Green’s function Gb is then the unique solution associated to the initial condition u0 = δ,
where δ stands for the Dirac delta sequence which satisfies δℓ = 1 if ℓ = 0 and δℓ = 0 otherwise.
We thus have

∀ t > 0 , Gb(t) = Sb(t)δ =
+∞∑
n=0

tn

n! b(n) ⋆ δ =
+∞∑
n=0

tn

n! b(n),

since δ is a unitary element for the convolution, that is b ⋆ δ = b. As a consequence, solutions
to (3.1) starting from u(0) = u0 ∈ ℓq(Z;C) simply write

∀ t > 0 , u(t) = Sb(t)u0 = Gb(t) ⋆ u0.

We now present the main assumptions in the sequence b considered in this semi-discrete case.

Assumption 4 (Semi-discrete setting). The sequence b = (bℓ)ℓ∈Z belongs to ℓ1(Z;C) and its
associated Fourier series:

νb : ζ ∈ C 7−→
∑
ℓ∈Z

bℓ ζℓ ,

defines a holomorphic function on an annulus {ζ ∈ C | 1 − ε < |ζ| < 1 + ε} for some ε > 0.
Furthermore, there holds:

sup
κ∈S1

Re(νb(κ)) = 0 .

We also assume that there exists a finite set of pairwise distinct points {κ1, . . . , κK}, K ≥ 1, in S1

such that the real part of νb(κk) is 0 for any k ∈ {1, . . . , K} and:

∀ κ ∈ S1 \
{

κ1, . . . , κK

}
, Re (νb(κ)) < 0 .

Moreover, at any point κk ∈ S1, k ∈ {1, . . . , K}, where the real part of νb(κk) vanishes, that is
νb(κk) = izk for some zk ∈ R, there exists a real number αk, a complex number βk with positive

V–11



real part and a nonzero integer µk ∈ N∗ such that, as the complex number ξ tends to zero, there
holds:

νb

(
κk ei ξ

)
= izk + i αk ξ − βk ξ2 µk + O(ξ2 µk+1) . (3.2)

Under the above assumption on the sequence b, we also have the following convergent power
series:

νb

(
κk ei ξ

)
= izk + i αk ξ − βk ξ2 µk +

∑
ν≥2 µk+1

γk,ν

ν ! (i ξ)ν , (3.3)

for some complex coefficients γk,ν ∈ C which allow to define the polynomials Pk,m exactly as
in (1.4). An analogue of Theorem 1 in this semi-discrete setting reads as follows.

Theorem 2 (Semi-discrete local limit theorem). Let the sequence b satisfy Assumption 4. Then
there exist a positive real number L > 0 and some positive constant c0 > 0 such that for any t ≥ 1
and ℓ ∈ Z with |ℓ| > L t, there holds:∣∣∣Gb

ℓ (t)
∣∣∣ ≤ exp(−c0 t − c0 |ℓ|) . (3.4)

Moreover, for any integer M ∈ N, there exist some positive constants CM and cM (that depend on
M and a) such that the following holds: for any t ≥ 1 and ℓ ∈ Z with |ℓ| ≤ L t, there holds:∣∣∣∣∣Gb

ℓ (t) −
K∑

k=1

κ−ℓ
k ei t z

k

t1/(2 µk) Hβk

2 µk

(
ℓ − αkt

t1/(2 µk)

)

−
K∑

k=1

M∑
m=1

κ−ℓ
k et i z

k

t(m+1)/(2 µk)

(
Pk,m(−d/dx)Hβk

2 µk

)( ℓ − αkt

t1/(2 µk)

)∣∣∣∣∣
≤ CM

K∑
k=1

1
t(M+2)/(2 µk) exp

−cM

(
|ℓ − αkt|
t1/(2 µk)

) 2 µk
2 µk−1

 . (3.5)

It is important to remark that estimates (3.4) and (3.5) are only valid for large times, here taken
as t ≥ 1. Indeed, for small times 0 < t < 1, we do not expect the validity of such an estimate, and
one needs to be careful with the singularity at t = 0. Theorem 2 was already proved in [4] in a
specific case at order M = 1 with a different method of proof. Instead of using Fourier series on
Z, [4] uses Laplace transform in time to derive an alternate representation formula for the Green’s
function Gb(t). Here, for any t > 0 and ℓ ∈ Z, we have the following analogue of (2.1) that is

Gb
ℓ (t) = 1

2 π

∫ π

−π

e−i ℓ θ et νb(eiθ) dθ .

With this representation formula, we observe that the proof of Theorem 1 readily applies to the con-
tinuous setting without any difficulty. Coming back to the example addressed in [4], it corresponds
in our setting to the finitely supported sequence b defined as

b−1 = 1
χ

, b0 = −χ − 1
χ

, b1 = χ, with bℓ = 0 for |ℓ| ≥ 2,

for some χ > 1. In that case, the associated amplification factor reads

νb(eiθ) = 1
χ

e−iθ − χ − 1
χ

+ χeiθ = −
(

χ + 1
χ

)
(1 − cos(θ)) + i

(
χ − 1

χ

)
sin(θ), θ ∈ [0, 2π),

such that there is a unique tangency point at the origin for θ = 0 with asymptotic expansion

νb(eiξ) = i
(

χ − 1
χ

)
ξ −

(
χ + 1

χ

)
ξ2

2 −
(

χ − 1
χ

)
(iξ)3

3! + O(ξ4),

as ξ → 0. This implies that α = χ − 1
χ > 0, β = χ

2 + 1
2χ , µ = 1 and we can even deduce the first

cumulant γ3 = −α = χ − 1
χ . As a consequence, Theorem 2 applied to this case with M = 1 gives
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for all t ≥ 1 and |ℓ| ≤ Lt for some L > 0:∣∣∣∣Gb
ℓ (t) − 1√

4πβt
exp

(
−xℓ(t)2

2

)
− α

24β2
√

2πt

(
xℓ(t)3 − 3xℓ(t)

)
exp

(
−xℓ(t)2

2

)∣∣∣∣
≤ C

t3/2 exp
(
−c xℓ(t)2) ,

for two positives constants C, c > 0, and where we have set

xℓ(t) := ℓ − αt√
2βt

.

This above expansion7 is precisely the one derived in [4, Proposition 4.1].

3.2. The dispersive case
As we already explained in the introduction, the parabolicity hypothesis of Assumption 3 is one
of two possible behaviors referenced by Thomée [32], the other behavior being the dispersive
case which is also referred to as the unstable case since it yields unboundedness of the sequence(∥∥a(n)

∥∥
ℓ1

)
n∈N, see [19, 32]. Let a be a given sequence that satisfies Assumption 1 and Assump-

tion 2, a tangency point κk is said to be dispersive if the asymptotic expansion of the modulus
of the amplification factor function Fa near this point satisfies the following property. There exist
a real number αk, a complex number βk with positive real part, two nonzero integers νk, µk ∈ N
verifying 1 < νk < 2µk and a real polynomial pk with pk(0) ̸= 0 such that

Fa

(
κk ei ξ

)
= Fa(κk) exp

(
i αk ξ + iξνk pk(ξ) − βk ξ2 µk + O

(
ξ2 µk+1)) , (3.6)

for all complex number ξ that tends to zero. We refer to [5, 10, 19, 27] for examples of sequences
yielding dispersive tangency points. In numerical analysis, a celebrated example where the above
expansion holds is given by the so-called Lax–Wendroff scheme for the transport equation [18, 23]
and is characterized by a sequence a taking values

a−1 = −λ + λ2

2 , a0 = 1 − λ2, a1 = λ + λ2

2 , with aℓ = 0 for |ℓ| ≥ 2

for some λ ∈ (−1, 1). A straightforward computation yields∣∣Fa

(
eiθ)∣∣ = 1 − 4λ2(1 − λ2)

(
sin θ

2

)4
, θ ∈ R,

which implies that the modulus of Fa has a unique tangency point κ = 1 with Fa(1) = 1 together
with asymptotic expansion

Fa

(
ei ξ
)

=
ξ→0

exp
(

i λ ξ − iλ(1 − λ2)
6 ξ3 − λ2(1 − λ2)

8 ξ4 + O
(
ξ5)) ,

which is of the form of (3.6) with ν = 3 and 2µ = 4. To our best knowledge, it is still an open
problem to prove an analogue of Theorem 1 for dispersive tangency points. The more advanced
result available in the literature is [27, Theorem 1.2] which provides the leading order term of a(n).
Specified to the Lax–Wendroff example, [27, Theorem 1.2] shows that

a
(n)
ℓ = 1

n1/3 Aiϖ
3

(
ℓ − λn

n1/3

)
+ o(n−1/3),

uniformly with respect to ℓ ∈ Z, where ϖ = λ(1−λ2)
6 and the function Aiϖ

3 is defined as the
oscillatory integral8:

∀ x ∈ R Aiϖ
3 (x) = 1

2π

∫
R

e−ixu e−iϖu3
du .

We shall deal with the local limit theorem (up to any order) in the dispersive case in a subsequent
work.

7Borrowing the notation from [4], one has α = c∗ and β = cosh(λ∗).
8The function A

i/3
3 is the classical Airy function.
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3.3. The multi-dimensional case
Another very interesting perspective is the generalization of Theorem 1 in the multi-dimensional
setting where the sequence a is now indexed on the d-dimensional lattice Zd, with some integer
d ≥ 2. We refer to the fascinating recent developments [7, 26, 28, 29] on the subject. As expected,
the multi-dimensional setting presents a much richer classification of the tangency points compared
to the one-dimensional case which has essentially two cases (parabolic and dispersive)9. Borrowing
the terminology used in the aforementioned references, the multi-dimensional analogue of the
parabolic case studied here would correspond to the case where all tangency points of Fa are of
positive homogeneous type, see [28, Definition 1.3.]. In that case, one can hope to prove a result
analogous to Theorem 1, and we leave it for future work.
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