Nous passons en revue quelques résultats récents sur l’existence d’écoulements d’Euler stationnaires non radiaux à support compact dans le plan. L’approche que nous adoptons repose sur un problème elliptique surdéterminé, inspiré par la conjecture de Schiffer en géométrie spectrale.
We review some recent results on the existence of nonradial stationary planar Euler flows with compact support. The approach we take relies on an elliptic overdetermined problem motivated by Schiffer’s conjecture in spectral geometry.
@incollection{JEDP_2024____A4_0, author = {Alberto Enciso}, title = {Schiffer-type problems and nonradial stationary {Euler} flows with compact support}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:4}, pages = {1--10}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2024}, doi = {10.5802/jedp.685}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.685/} }
TY - JOUR AU - Alberto Enciso TI - Schiffer-type problems and nonradial stationary Euler flows with compact support JO - Journées équations aux dérivées partielles N1 - talk:4 PY - 2024 SP - 1 EP - 10 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.685/ DO - 10.5802/jedp.685 LA - en ID - JEDP_2024____A4_0 ER -
%0 Journal Article %A Alberto Enciso %T Schiffer-type problems and nonradial stationary Euler flows with compact support %J Journées équations aux dérivées partielles %Z talk:4 %D 2024 %P 1-10 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.685/ %R 10.5802/jedp.685 %G en %F JEDP_2024____A4_0
Alberto Enciso. Schiffer-type problems and nonradial stationary Euler flows with compact support. Journées équations aux dérivées partielles (2024), Exposé no. 4, 10 p. doi : 10.5802/jedp.685. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.685/
[1] P. Aviles Symmetry theorems related to Pompeiu’s problem, Am. J. Math., Volume 108 (1986) no. 5, pp. 1023-1036 | DOI | MR
[2] C. Berenstein An inverse spectral theorem and its relation to the Pompeiu problem, J. Anal. Math., Volume 37 (1980), pp. 128-144 | DOI
[3] C. Berenstein; P. Yang An inverse Neumann problem, J. Reine Angew. Math., Volume 382 (1987), pp. 1-21 | MR
[4] L. Brown; B. M. Schreiber; B. A. Taylor Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier, Volume 23 (1973), pp. 125-154 | DOI | Numdam | MR
[5] L. Chakalov Sur un problème de D. Pompeiu, Ann. Univ. Sofia, Fac. Sci., Livre I, Volume 40 (1944), pp. 1-14
[6] P. Constantin; J. La; V. Vicol Remarks on a paper by Gavrilov: Grad–Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications, Geom. Funct. Anal., Volume 29 (2019), pp. 1773-1793 | DOI | MR
[7] M. Crandall; P. Rabinowitz Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971), pp. 321-340 | DOI | MR
[8] J. Deng Some results on the Schiffer conjecture in , J. Differ. Equations, Volume 253 (2012) no. 8, pp. 2515-2526 | DOI | MR
[9] T. M. Elgindi; Y. Huang; A. R. Said; C. Xie A Classification Theorem for Steady Euler Flows (2024) | arXiv
[10] A. Enciso; A. Fernández; D. Ruiz Smooth nonradial stationary Euler flows on the plane with compact support (2024) | arXiv
[11] A. Enciso; A. Fernández; D. Ruiz; P. Sicbaldi A Schiffer-type problem for annuli with applications to stationary planar Euler flows (2023) (to appear in Duke Math. J.) | arXiv
[12] M. M. Fall; I. A. Minlend; T. Weth Unbounded periodic solutions to Serrin’s overdetermined boundary value problem, Arch. Ration. Mech. Anal., Volume 233 (2017) no. 2, pp. 737-759 | DOI | MR
[13] M. M. Fall; I. A. Minlend; T. Weth Serrin’s overdetermined problem on the sphere, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 1, 3, 24 pages | MR
[14] M. M. Fall; I. A. Minlend; T. Weth The Schiffer problem on the cylinder and on the 2-sphere (2023) (to appear in J. Eur. Math. Soc.) | arXiv
[15] A. V. Gavrilov A steady Euler flow with compact support, Geom. Funct. Anal., Volume 29 (2019), pp. 190-197 | DOI | MR
[16] J. Gómez-Serrano; J. Park; J. Shi Existence of non-trivial non-concentrated compactly supported stationary solutions of the 2D Euler equation with finite energy (2024) (to appear in Mem. Am. Math. Soc.)
[17] J. Gómez-Serrano; J. Park; J. Shi; Y. Yao Symmetry in stationary and uniformly-rotating solutions of active scalar equations, Duke Math. J., Volume 170 (2021) no. 13, pp. 2957-3038 | DOI | MR
[18] F. Hamel; N. Nadirashvili Circular flows for the Euler equations in two-dimensional annular domains, and related free boundary problems, J. Eur. Math. Soc., Volume 25 (2023), pp. 323-368 | DOI | MR | Zbl
[19] B. Kawohl; M. Lucia Some results related to Schiffer’s problem, J. Anal. Math., Volume 142 (2020), pp. 667-696 | DOI | MR
[20] D. Kinderlehrer; L. Nirenberg Regularity in free boundary problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 4(2) (1977), pp. 373-391 | Numdam | MR
[21] G. Liu Symmetry results for overdetermined boundary value problems of nonlinear elliptic equations, Nonlinear Anal., Theory Methods Appl., Volume 72 (2010), pp. 3943-3952 | DOI | MR
[22] D. Pompeiu Sur certains systèmes d’équations linéaires et sur une propriété intégrale des fonctions de plusieurs variables, C. R. Acad. Sci., Ser. I, Volume 188 (1929), pp. 1138-1139
[23] W. Reichel Radial symmetry by moving planes for semilinear elliptic BVPs on annuli and other non-convex domains, Progress in Partial Differential Equations: Elliptic and Parabolic Problems (Pitman Research Notes in Mathematics Series), Volume 325, Longman Scientific & Technical, 1995, pp. 164-182
[24] D. Ruiz Nonsymmetric sign-changing solutions to overdetermined elliptic problems in bounded domains (2022) (to appear in J. Eur. Math. Soc.) | arXiv
[25] D. Ruiz Symmetry Results for Compactly Supported Steady Solutions of the 2D Euler Equations, Arch. Ration. Mech. Anal., Volume 247 (2023) no. 3, 40, 25 pages | DOI | MR
[26] J. Serrin A symmetry theorem in potential theory, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 304-318 | DOI | MR
[27] V. A. Sharafutdinov Two-dimensional Gavrilov flows, Sib. Èlektron. Mat. Izv., Volume 21 (2024) no. 1, pp. 247-258 | MR
[28] B. Sirakov Symmetry for exterior elliptic problems and two conjectures in potential theory, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 18 (2001) no. 2, pp. 135-156 | DOI | Numdam | MR
[29] K. T. Smith; D. C. Solmon; S. L. Wagner Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Am. Math. Soc., Volume 83 (1977), pp. 1227-1270 | DOI | MR
[30] S. A. Williams A partial solution to the Pompeiu problem, Math. Ann., Volume 223 (1976) no. 2, pp. 183-190 | DOI | MR
[31] N. B. Willms; G. M. L. Gladwell Saddle points and overdetermined problems for the Helmholtz equation, Z. Angew. Math. Phys., Volume 45 (1994), pp. 1-26 | DOI | MR
[32] S.-T. Yau Problem section, Seminars on Differential Geometry (Annals of Mathematics Studies), Volume 102, Princeton University Press, 1982, pp. 669-706
[33] L. Zalcman A bibliographic survey of the Pompeiu problem, Approximation by Solutions of Partial Differential equations (Dordrecht Kluwer, ed.), Pitman Res. Notes, 1992, pp. 185-194 | DOI
Cité par Sources :