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RT AEDP (CNRS)

Schiffer-type problems and nonradial stationary Euler flows with
compact support

Alberto Enciso

Problèmes de type Schiffer et écoulements d’Euler stationnaires non radiaux à
support compact

Résumé

Nous passons en revue quelques résultats récents sur l’existence d’écoulements d’Euler stationnaires
non radiaux à support compact dans le plan. L’approche que nous adoptons repose sur un problème
elliptique surdéterminé, inspiré par la conjecture de Schiffer en géométrie spectrale.

Abstract

We review some recent results on the existence of nonradial stationary planar Euler flows with
compact support. The approach we take relies on an elliptic overdetermined problem motivated by
Schiffer’s conjecture in spectral geometry.

1. Introduction

Consider an ideal fluid in equilibrium. Can the velocity of the fluid be identically zero outside a
bounded set?

This naive question turns out to be remarkably difficult. In three dimensions, the answer was
only discovered a few years ago, when Gavrilov [15] constructed a family of smooth, compactly
supported solutions to the stationary incompressible Euler equations

v · ∇v + ∇p = 0 , div v = 0 (1.1)
on R3. Gavrilov’s extremely clever construction was put in a broader context in the paper [6],
which also presents illuminating discussions.

In contrast, in two dimensions the existence of compactly supported solutions to (1.1) is ele-
mentary. Indeed, writing the velocity field as the perpendicular gradient of a stream function (i.e.,
v := ∇⊥ψ := (−∂2ψ, ∂1ψ)), the 2d Euler equations take the equivalent form

∇∆ψ · ∇⊥ψ = 0 . (1.2)
Therefore, any radially symmetric ψ ∈ C∞

c (R2) defines a compactly supported stationary Euler
flow. More generally, one can let ψ be supported on a union of pairwise disjoint disks, which we
will refer to as a locally radial function.

Thus the natural question to ask in the planar case is whether nontrivial stationary Euler
flows exist. There are several recent rigidity results [17, 18, 25] that impose strong constraints on
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the structure of planar stationary Euler flows in various contexts. In fact, continuous, compactly
supported stationary Euler flows that are not locally radial were constructed only recently [16].
These flows are of vortex patch type, so the velocity field is piecewise smooth but not differentiable.
The proof is challenging, relying on several insightful observations and a Nash–Moser iteration
scheme.

Our approach to stationary Euler flows in two dimensions is based on overdetermined elliptic
problems. The reason for which one often resorts to elliptic equations in the study of planar
stationary Euler flows is that any solution of a semilinear equation of the form

∆ψ = g(ψ) (1.3)
satisfies (1.2). As a matter of fact, it has been recently shown [9] that all analytic stationary
Euler flows on the plane that do not satisfy (1.3) have a translation symmetry. Furthermore,
overdetermined boundary conditions arise because, if a continuous vector field v = ∇⊥ψ is zero
outside a bounded domain Ω ⊂ R2, then the whole gradient ∇ψ (instead of just the normal
derivative ∂νψ) must vanish on ∂Ω.

In this note we will be mostly interested in the case where the function g is linear, that is,
g(ψ) = λψ. This situation is of great interest in itself, as the corresponding overdetermined problem
is very closely related to one of the most intriguing problems in spectral geometry: the Schiffer
conjecture. In his 1982 list of open problems, S.T. Yau stated it as follows [32, Problem 80]:

Conjecture (Schiffer, 1950s). If a nonconstant Neumann eigenfunction u of the Laplacian on a
smooth bounded domain Ω ⊂ R2 is constant on the boundary ∂Ω, then u is radially symmetric
and Ω is a ball.

This overdetermined problem is closely related to the Pompeiu problem [22], an open question
in integral geometry with many applications in remote sensing, image recovery and tomography [2,
29, 31]. The Pompeiu problem can be stated as the following inverse problem: Given a bounded
domain Ω ⊂ R2, is it possible to recover any continuous function f on R2 from knowledge of its
integral over all the domains that are the image of Ω under a rigid motion? If this is the case, so
that the only f ∈ C(R2) satisfying ∫

R(Ω)
f(x) dx = 0 , (1.4)

for any rigid motion R is f ≡ 0, the domain Ω is said to have the Pompeiu property. Squares,
polygons, convex domains with a corner, and ellipses have the Pompeiu property, and Chakalov
was apparently the first to point out that balls fail to have the Pompeiu property [4, 5, 33]. In 1976,
Williams proved [30] that a smooth bounded domain with boundary homeomorphic to a sphere
fails to have the Pompeiu property if and only if it supports a nontrivial Neumann eigenfunction
which is constant on ∂Ω. Therefore, the Schiffer conjecture and the Pompeiu problem are equivalent
for simply connected domains.

Although the Schiffer conjecture is famously open, some partial results are available. It is known
that Ω must indeed be a ball under one of the following additional hypotheses:

1. There exists an infinite sequence of orthogonal Neumann eigenfunctions that are constant
on ∂Ω, which is connected [2, 3].

2. The third order interior normal derivative of u is constant on ∂Ω, which is connected [21].

3. When Ω is simply connected and u has no saddle points in the interior of Ω [31].

4. If Ω is simply connected and the eigenvalue µ is among the seven lowest Neumann eigenvalues
of the domain [1, 8].

5. If the fourth or fifth order interior normal derivative of u is constant on ∂Ω [19].

It is also known that the boundary of any reasonably smooth domain Ω with the property stated
in the Schiffer conjecture must be analytic as a consequence of a result of Kinderlehrer and Niren-
berg [20] on the regularity of free boundaries.

In this paper we consider an analog of the Schiffer conjecture in which replace the disk by an
annulus. This corresponds to relaxing the hypotheses by allowing the Neumann eigenfunction to
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be locally constant on the boundary, that is, constant on each connected component of ∂Ω. The
question is whether, in this case, Ω must necessarily be a ball or an annulus.

Remarkably, most of the rigidity properties that have been proven for the Schiffer conjecture
carry over to this weaker problem [11]. First, essentially the same reasoning demonstrates that ∂Ω
must be analytic. Additionally, following the approach of [2, 3], one can show that if there exists an
infinite sequence of orthogonal eigenfunctions that are locally constant on the boundary of Ω ⊂ R2,
then Ω must be either a disk or an annulus. When the Neumann eigenvalue is sufficiently low, Ω
must also be a disk or an annulus, a result in the vein of [1, 8]. And doubly connected domains
with this property turn out to be connected with an integral identity somewhat reminiscent of
the Pompeiu property, as detailed in [11]. Yet, however, this overdetermined problem does have
nontrivial solutions [11]:

Theorem 1. There exist parametric families of doubly connected bounded domains Ω ⊂ R2 such
that the overdetermined eigenvalue problem

∆u+ µu = 0 in Ω , ∇u = 0 on ∂Ω ,

admits, for some µ ∈ R, a non-radial solution. More precisely, for any large enough integer l and for
all s in a small neighborhood of 0, the family of domains Ω ≡ Ωl,s is given in polar coordinates by

Ω :=
{

(r, θ) ∈ R+ × T : al + s bl,s(θ) < r < 1 + sBl,s(θ)
}
, (1.5)

where bl,s, Bl,s are analytic functions on the circle T := R/2πZ of the form
bl,s(θ) = αl cos lθ + o(1) , Bl,s(θ) = βl cos lθ + o(1) ,

where al ∈ (0, 1), αl and βl are nonzero constants, and where the o(1) terms tend to 0 as s → 0.

Having this result in hand, we can go back to the study of nonradial stationary Euler flows with
compact support. This is because a straightforward application of Theorem 1 yields families of
nonradial stationary planar Euler flows with compact support that are continuous and piecewise
smooth:

Theorem 2. Let u and Ω be as in Theorem 1. Then the field defined in terms of the stream
function

ψ(x) :=
{
u(x) , x ∈ Ω,
0 x ̸∈ Ω,

(1.6)

as v := ∇⊥ψ is a compactly supported stationary Euler flow of class C(R2) ∩ C∞(R2\∂Ω) that is
not locally radial.

Proof. Since ∇u = 0 on ∂Ω, ψ ∈ C1(R2), so the field v := ∇⊥ψ is continuous and piecewise
smooth. It is obviously divergence free in the sense of distributions because it is a perpendicular
gradient.

Let Ω′ be the bounded connected component of R2\Ω, and let Γ1,Γ2 the components of ∂Ω.
We can assume ∂Ω′ = Γ2. With the constants cj := u|Γj

, we define the pressure

p :=


0 in R2\(Ω ∪ Ω′),

− 1
2 (|∇u|2 + µu2 − µc2

1) in Ω ,

− 1
2µ(c2

2 − c2
1) in Ω′ .

To show u satisfies the stationary Euler equation, we simply integrate by parts to show that∫
R2

(vi vj ∂iwj + p divw) dx =
∫

Ω
(vi vj ∂iwj + p divw) dx

= −
∫

Ω
(v · ∇v + ∇p) · w dx = 0 ,

all w ∈ C∞
c (R2,R2). □

It is natural to wonder whether one can refine the argument to construct smooth nonradial
stationary Euler flows with compact support that are not radial. This can indeed be done [10], but
the proof involves several new ideas and is much more technical. Although we do not aim to cover
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the proof of this fact, it is worth pointing out that the ideas behind the proof of Theorem 1 serve
as a good starting point for this more sophisticated result:

Theorem 3. For any positive integer k, there exist compactly supported stationary Euler flows of
class Ck(R2) that are not locally radial.

The paper is organized as follows. First, in Section 3 we will discuss a direct attempt towards
the proof of Theorem 1. By analyzing why it fails, we will obtain valuable intuition. The actual
proof of Theorem 1 will be sketched in Section 4. To conclude, in Section 5 we will discuss the
main difficulties that appear when one tries to extend these ideas to establish the much harder
Theorem 3.

2. The Dirichlet and Neumann spectrum of an annulus

Since eigenfunctions of annuli play a key role in what follows, let us start by introducing some
notation. By the scaling properties of the Laplacian, it is natural to fix the outer radius of the
annulus to 1 and let the inner radius range from 0 to 1. In polar coordinates (r, θ) ∈ R+ × T, let
us thus consider the family of annuli

Ωa := {a < r < 1} ,
labeled by the parameter a ∈ (0, 1).

On Ωa, it is well known that an orthogonal basis of L2(Ωa, r dr dθ) consisting of Neumann
eigenfunctions is

{ψa
0,n(r), ψa

l,n(r) cos lθ, ψa
l,n(r) sin lθ : l ≥ 1, n ≥ 0} .

The Neumann spectrum of the annulus Ωa, counting multiplicities, is then {µl,n(a)}∞
l,n=0. From

now on, we will omit the dependence on a whenever no confusion can arise. Moreover, for each ≤ 0,
{ψl,n}∞

n=0 is an orthonormal basis of L2((a, 1), r dr) consisting of eigenfunctions of the associated
radial operator. Thus these functions (whose dependence on a we omit notationally) satisfy the
ODE

ψ′′
l,n +

ψ′
l,n

r
− l2ψl,n

r2 + µl,n ψl,n = 0 in (a, 1) , ψ′
l,n(a) = ψ′

l,n(1) = 0 , (Nl
a)

for some nonnegative constants
µl,0 < µl,1 < µl,2 < · · · < µl,n < · · ·

tending to infinity as n → ∞.
Likewise, an orthogonal basis of L2(Ωa, r dr dθ) consisting of Dirichlet eigenfunctions in the

annulus Ωa is
{φa

0,n(r), φa
l,n(r) cos lθ, φa

l,n(r) sin lθ}∞
l=1,n=0 .

Also omitting the dependence on a, let us record here that the radial eigenfunctions satisfy the
ODE

φ′′
l,n +

φ′
l,n

r
− l2φl,n

r2 + λl,n φl,n = 0 in (a, 1) , φl,n = φl,n(1) = 0 , (Dl
a)

for some positive constants
λl,0 < λl,1 < λl,2 < · · · < λl,n < · · ·

tending to infinity as n → ∞. The Dirichlet spectrum of Ωa is therefore {λl,n(a)}∞
l,n=0.

3. A first attempt

Theorem 1 relies on a bifurcation argument. Specifically, we will employ the celebrated Crandall–
Rabinowitz theorem [7], which is a prime example of a bifurcation result for partial differential
equations and provides a convenient tool for demonstrating the emergence of a pitchfork bifurcation
in an infinite-dimensional context. It can be stated as follows:

Theorem 4 (Crandall–Rabinowitz). Consider a C2 function F : X × (0, 1) → Y , where X and Y
are Banach spaces. Assume that:

1. F (0, a) = 0 for all a ∈ (0, 1).
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2. dim ker(DvF )(0,a∗) = codim Ran(DvF )(0,a∗) = 1 for some a∗ ∈ (0, 1).

3. (DvDaF )(0,a∗)[ker(DvF )(0,a∗)] ̸⊂ Ran(DvF )(0,a∗).

Then there is a nontrivial C1 curve of solutions, {(vs, as) : |s| < s0} ⊂ X×(0, 1) with F (vs, as) = 0,
such that a0 = a∗ and vs ̸= 0 for all s ̸= 0.

Remark 5. The model behavior corresponds to the function F : R×(0, 1) → R given by F (v, a) :=
( 1

2 − a− v2)v, with a∗ := 1
2 .

Our objective now is to see how one can formalize the proof of Theorem 1 using this result.
We can use as a starting point is the family of annuli Ωa and a suitable family of radial Neumann
eigenfunctions, which will eventually be ua := ψa

0,2 in the notation of the last section. We use the
notation µa := µ0,2(a) for corresponding eigenvalue.

To deform the annulus Ωa, we can consider a “small” function B ∈ C2,α(T,R2), whose com-
ponents we will denote by B = (b, B). Here α is some fixed number in the interval (0, 1). The
corresponding deformed annulus is

ΩB
a := {a+ b(θ) < r < 1 +B(θ)} . (3.1)

For small enough B, the implicit function theorem guarantees the existence of a Neumann eigen-
function uB

a (r, θ) on ΩB
a , with eigenvalue µB

a , which depend continuously on B and tend to (ua, µa)
as B → 0 (in a suitable sense).

To ensure that uB
a is locally constant on the boundary of ∂ΩB

a , we can look for zeros of the
function

F (B, a) :=
(
uB

a (a+ b(·), ·)), uB
a (1 +B(·), ·))

)
.

By elliptic regularity, this maps an open subset of C2,α(T,R2) to C2,α(T,R2) (but no better).
We certainly have F (0, a) = 0 for all a ∈ (0, 1). To verify the remaining hypotheses of the

Crandall–Rabinowitz theorem, we need to compute the derivative of F . This is fairly straightfor-
ward: one can readily see that there are explicit nonzero constants cj(a) such that

(DBF )(0,a)W =
(
c1(a)ψa

W(a, ·), c2(a)ψa
W(1, ·)

)
,

where ψa
W(r, θ) is the only solution to the Neumann problem

∆ψa
W + µaψ

a
W = 0 in Ωa , ∂rψ

a
W(r, θ) =

{
W1(θ) on r = a ,

W2(θ) on r = 1

and where we have written W =: (W1,W2).
This implies that (DBF )(0,a) behaves essentially like the Neumann-to-Dirichlet map of the

domain, so in particular it maps C2,α(T,R2) → C3,α(T,R2). This is a serious issue, which pre-
vents us from applying the Crandall–Rabinowitz theorem (or any other bifurcation result) because
Ran(DBF )(0,a∗) ⊂ C2,α(T,R2) has infinite codimension. This sort of difficulties, which are usually
called loss of derivatives in the context of bifurcation theory, can sometimes be circumvented by
means of a Nash–Moser iteration scheme. But this is indeed a bad case of loss of derivatives, which
we do not know how to overcome by brute force.

In a way, what one should learn from this failure is that there are fundamental (as opposed to
merely technical) reasons to never take bifurcation for granted. In fact, many important classes of
overdetermined problems are known to be rigid in the sense that there are no nontrivial solutions,
see for instance to [23, 26, 28]. The deeply geometrical interplay between rigidity and flexibility
is perhaps the most distinctive feature of the study of overdetermined problems, and underlies
Schiffer’s conjecture about Neumann eigenfunctions. As a prime example of this dichotomy, note
that while Serrin’s symmetry result [24, 26] ensures that the only positive solutions to many
overdetermined problems on a bounded domain of Rn are radially symmetric, nontrivial solutions
do bifurcate from radially symmetric ones in the case of periodic unbounded domains [12, 13].

From a conceptual point of view, our key contribution is to identify a novel geometric setting in
which our overdetermined problem exhibits some flexibility: annular domains in the plane. This is
the first flexibility result for an eigenvalue problem under overdetermined boundary conditions in
bounded domains of the Euclidean space. Looking for nontrivial solutions in this setting involves
a leap of faith: this kind of domains were completely uncharted territory in the context of Schiffer-
type problems and, contrarily to the kind of domains considered in [14], there were no indications
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that flexibility was to be expected. What is known, in fact, is that annular domains satisfy some
fundamental partial rigidity properties [23] that do not hold in the case of domains in the cylinder
or large domains in the sphere.

Although we eventually show that the new geometric setting of planar annuli has good flexibility
properties, the strong rigidity properties it nonetheless exhibits turn out to be very important too.
The “partial rigidity” of the annular domains we take in our paper is reflected in the strong rigidity
properties of Neumann eigenfunctions on bounded Euclidean domains that are locally constant on
the boundary: morally, this is why the problem we solve has the same known rigidity properties
as the Schiffer conjecture.

In any case, to overcome the problem of loss of derivatives and show that one can indeed bifurcate
from annuli, we need to develop a different approach to the problem. This will be done in the next
section.

4. Sketch of the proof of Theorem 1

Let us go back to Equation (3.1). We will now proceed by mapping the deformed domain ΩB
a to

the fixed annulus Ω1/2 := { 1
2 < r < 1} by means of the diffeomorphism

ΦB
a : Ω1/2 ∋ (R, θ) 7→ (r, θ) ∈ ΩB

a

defined by
r := a+ (1 − a+B(θ))(2R− 1) + 2(1 −R)b(θ) .

We will denote the nontrivial component of the diffeomorphism by
ΦB

a (R, θ) =: (ΦB,0
a (R, θ), θ) .

As we had anticipated, we will bifurcate from the family of radial Neumann eigenfunctions
ψa

0,2(r). Contrary to what happens in the case of periodic domains discussed above, ψa
0,1 cannot

work because of a symmetry result due to Reichel [23]. When we pull these eigenfunctions back to
the fixed annulus, we thus obtain the family of radial functions

ψa(R) := ψa
0,2[Φ0,0

a (R, 0)] .

Our basic unknown is not the “boundary deformation” B(θ) ∈ C2,α(T,R2), but a “Dirichlet”
function v(R, θ) ∈ C2,α

D (Ω1/2), where

C2,α
D (Ω1/2) :=

{
v ∈ C2,α(Ω1/2) : v|∂Ω1/2 = 0

}
.

This function obviously contains much more information than a function B ∈ C2,α(T,R2), so we
use v to parametrize both the boundary, by means of a map

C2,α
D (Ω1/2) ∋ v 7→ Bv ∈ C2,α(T,R2) ,

and to correct the eigenfunction (pulled back to the fixed annulus) as ψa + wv, where wv is a
“Dirichlet–Neumann” function. More precisely, we define a map

C2,α
D (Ω1/2) ∋ v 7→ wv ∈ C2,α

DN(Ω1/2) :=
{
w ∈ C2,α

D (Ω1/2) : ∂rw|∂Ω1/2 = 0
}
.

The specific expressions for these maps are not particularly illuminating: writing Bv = (bv, Bv),
one eventually takes

bv(θ) := −2(1 − a)(ψ′′
a( 1

2 ))−1∂Rv
( 1

2 , θ
)
,

Bv(θ) := −2(1 − a)(ψ′′
a(1))−1∂Rv(1, θ) ,

wv(R, θ) := v(R, θ) − ψ
′
a(R)

2(1 − a)

[
2(1 −R)bv(θ) + (2R− 1)Bv(θ)

]
.

The function that we consider in the bifurcation argument is then
F (v, a) :=

{
[∆ + µ02(a)]

[
ψa

02 + wv ◦ (ΦBv
a )−1]}

◦ ΦBv
a . (4.1)

Thus F (v, a) = 0 if and only u := ψa
02 +wv ◦(ΦBv

a )−1 is an eigenfunction with eigenvalue µ0,2(a) on
the domain ΩBv

a . Also, since wv has zero Dirichlet and Neumann boundary traces, ∇u is identically
zero on ∂ΩBv

a .
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To use the Crandall–Rabinowitz theorem, one must now analyze the derivative of this map. It
is not hard to show that, in fact,

(DvF )(0,a)w =
{

[∆ + µ02(a)]
[
w ◦ (Φ0

a)−1]}
◦ Φ0

a . (4.2)

Using v as the main unknown instead of B, by itself, does not solve the problem of loss of
derivatives; indeed, a moment’s thought reveals that the range of (4.2) has infinite codimension
with the obvious choice of Hölder spaces. However, as first shown by Fall, Minlend and Weth in [14],
one can try to compensate this loss of derivatives using anisotropic Banach spaces. The basic idea is
that, since the Dirichlet-to-Neumann map essentially originates from a radial derivative, including
an additional radial derivative in the functional setting may provide some additional control. This
is the content of the following key lemma [11]:

Lemma 6 (Fredholmness). For any integer l ≥ 3 and any a ∈ (0, 1), (DvF )(0,a) : X → Y is
Fredholm of index 0.

Here and in what follows, X and Y are the Banach spaces

X := {u ∈ C2,α
D (Ω1/2) : ∂Ru ∈ C2,α(Ω1/2)}/Zl , Y :=

(
C1,α(Ω1/2) + C0,α

D (Ω1/2)
)
/Zl ,

endowed with their natural norms. Here l ≥ 3 is certain integer, and the quotient by the discrete
group Zl means that we are only considering functions invariant under a Zl-dihedral symmetry
(that is, functions which are invariant under the action of the isometry group of an l-sided regular
polygon).

We can now get back to the hypotheses of the Crandall–Rabinowitz theorem. Since we have
started with a family of radial eigenfunctions, we certainly have F (0, a) = 0, and Lemma 6 ensures
that dim ker(DvF )(0,a) = codim Ran(DvF )(0,a) for all a ∈ (0, 1). Thus we only need to verify the
existence of some al,∗ ∈ (0, 1) for which

dim ker(DvF )(0,al,∗) = 1 (4.3)

and the transversality condition

(DvDaF )(0,al,∗)[ker(DvF )(0,al,∗)] ̸⊂ Ran(DvF )(0,al,∗) (4.4)

That we can indeed satisfy these conditions (at least, provided that l is large enough) is the con-
tent of the following two technical lemmas, which are the workhorse behind Theorem 1. Although
we will not discuss the proofs, we must point out that checking these conditions boils down to the
analysis of Dirichlet and Neumann eigenfunctions on annuli.

Lemma 7 (Eigenvalue crossing). For all al,∗ ∈ (0, 1), the function F : X × (0, 1) → Y satisfies
the kernel condition (4.3) if and only if the eigenvalues of the annulus Ωa satisfy

µ0,2(al,∗) = λl,0(al,∗) ̸= λml,n(al,∗) ∀ (m,n) ̸= (1, 0) .

Moreover, for each l ≥ 4, there exists some al,∗ which satisfies this condition.

Lemma 8 (Transversality). Let al,∗ ∈ (0, 1) be as in Lemma 7. The transversality condition (4.4)
holds if and only if

µ′
0,2(al,∗) ̸= λ′

l,0(al,∗) ,
where the primes denote the derivative of the eigenvalue with respect to the parameter. Moreover,
for every large enough l, there exists some

al,∗ = 1 −
√

3π
l

+O(l−2) , (4.5)

for which this condition is satisfied.

Choosing l large enough, Theorem 1 essentially follows as a consequence of the Crandall–
Rabinowitz theorem and Lemmas 6–8. Since the inner radius in (4.5) is very close to 1, the
qualitative picture one obtains is that the nonradial domains bifurcate from thin annuli. (This
is not completely accurate, though, since one can prove an analogous result for l = 4 and the
annulus Ωa4,∗ is not particularly thin.)
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5. Some comments on Theorem 3

Theorem 3 also relies on a bifurcation argument: nonradial stationary flows with compact sup-
port branch out from a suitably chosen family of radially symmetric, compactly supported flows.
These radial flows are given by the perpendicular gradient a one-parameter family of radial stream
functions ψa which are supported on certain annuli Ωa and which vanishes on ∂Ωa to a high or-
der m ≥ 1. To implement a bifurcation argument, one assumes that ua := ψa|Ωa

satisfies certain
differential equation in Ωa. The gist of the argument is to show that, for some value of the param-
eter a, one can consider a smooth small nonradial deformation u of ua which satisfies the same
equation on a slightly deformed domain Ω̃. It is then easy to see that if u also vanishes on the
boundary of the deformed domain to order m, just as in Theorem 2, then the vector field defined
by v := ∇⊥ψ with the stream function defined by (1.6) is of class Cm−1(R2). The equation satisfied
by u must therefore ensure that v is a stationary solution to the Euler equations (1.3).

For a bifurcation argument, it is known that one cannot directly use the Euler equation (1.2)
because its linerization is a completely unmanageable operator with an infinite-dimensional kernel.
Vortex patch solutions are not C1, so it is not clear how one could adapt the strategy of [16]. Also,
a variation of Gavrilov’s construction can only give locally radial solutions of compact support [27].
One would naively think that the elliptic equation (1.3) should be the way to go, but in fact this
is not true: one can show [10] that any compactly supported stationary flow of class C2 whose
stream function satisfies a semilinear equation of the form (1.3) must be locally radial.

Hence, in this problem, even the choice of the equation one should consider is rather nontrivial.
For us, the starting point of the paper is the construction of a non-autonomous nonlinearity fa

enabling us to effectively use the equation
∆ua + fa(|x|, ua) = 0 , (5.1)

to construct compactly supported solutions. To our best knowledge, this is the first time that
non-autonomous elliptic equations have been used for a similar purpose.

Still, passing from this rough idea to an actual proof is remarkably hard. This is because the
above outline does not address the three essential difficulties that the problem entails:

1. The radial stream function ua that we consider is a positive solution to an equation of the
form (5.1) on an annulus Ωa, which vanishes to m-th order on ∂Ωa. The deformation u

will satisfy the same equation on the deformed domain Ω̃ and tend to zero as ρ̃m on ∂Ω̃.
However, even with our well chosen nonlinearity, if u is a nonradial solution to (5.1) in Ω̃,
∇⊥u does not satisfy the stationary Euler equations: this is only true if u is close to ua in
a certain sense.

2. Suppose that the function u vanishes to order m ≥ 3 on ∂Ω̃, where Ω̃ can be thought of as
a slightly deformed annulus. For concreteness, we can think that u = ρ̃mU , where U is a
smooth function that does not vanish on ∂Ω̃ and where ρ̃ is a boundary defining function,
that is, a positive function on Ω̃ that vanishes on ∂Ω̃ exactly to first order. Since ∆u goes
like ρ̃m−2 near ∂Ω̃, the nonlinearity f(r, t) can only be Hölder continuous in the second
variable and must behave like |t|1− 2

m near 0. Thus, the linearization of this equation, which
one expects to encounter in any bifurcation argument, will be controlled by an operator of
the form

L = −∆ + c

ρ̃2 (5.2)

for some nonzero constant c (modulo terms that are less singular). The potential term is then
critically singular (i.e., it scales like the Laplacian), so it cannot be treated as a perturbation
of ∆: a new set of estimates is necessary.

3. To control the deformation of the domain, one must compensate a serious loss of derivatives
similar to the one encountered in the proof of Theorem 1 that we have sketched.

The complexity of the problem resides on the fact that these difficulties are strongly interrelated.
In particular, while we eventually succeed in overcoming it using anisotropic spaces X , Y, here these
spaces must be modeled not on standard Hölder or Sobolev spaces but on weighted spaces that
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effectively capture the sharp regularity properties of operators of the form (5.2). For this, we cannot
use off-the-shelf spaces and estimates; in fact, we need to develop from scratch a sharp regularity
theory for this kind of operators that is adapted to the situation at hand. This is because, in the
analysis of the linearized operator L, and we crucially need to control functions that are critical in
that their asymptotic behavior at the boundary is given by an indicial root of the operator.

Although these difficulties can ultimately be circumvented, they make the proof of Theorem 3
considerably less straightforward than that of Theorem 1. Details and further discussion can be
found in [10].
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