Reprenant l’argument classique pour un Lemme d’Egorov en temps long, il s’avère que le temps d’Ehrenfest prend la forme , au lieu du temps communément admis.
The long time Egorov lemma concerns the Heisenberg propagation of observables. It is usually considered to be valid in the range . After careful inspection of the proof, it turns out to hold in the larger range . This applies to operators with no particular dynamical assumption or geometric structure.
@incollection{JEDP_2024____A2_0, author = {Yannick Guedes Bonthonneau}, title = {Le lemme {d{\textquoteright}Egorov} et $2/3$}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:2}, pages = {1--10}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2024}, doi = {10.5802/jedp.683}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.683/} }
TY - JOUR AU - Yannick Guedes Bonthonneau TI - Le lemme d’Egorov et $2/3$ JO - Journées équations aux dérivées partielles N1 - talk:2 PY - 2024 SP - 1 EP - 10 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.683/ DO - 10.5802/jedp.683 LA - fr ID - JEDP_2024____A2_0 ER -
%0 Journal Article %A Yannick Guedes Bonthonneau %T Le lemme d’Egorov et $2/3$ %J Journées équations aux dérivées partielles %Z talk:2 %D 2024 %P 1-10 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.683/ %R 10.5802/jedp.683 %G fr %F JEDP_2024____A2_0
Yannick Guedes Bonthonneau. Le lemme d’Egorov et $2/3$. Journées équations aux dérivées partielles (2024), Exposé no. 2, 10 p. doi : 10.5802/jedp.683. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.683/
[1] Abdelkader Boulkhemair estimates for Weyl quantization, J. Funct. Anal., Volume 165 (1999) no. 1, pp. 173-204 | DOI | MR | Zbl
[2] Abdelkader Bouzouina; Didier Robert Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002) no. 2, pp. 223-252 | DOI | MR | Zbl
[3] Semyon Dyatlov; Long Jin Semiclassical measures on hyperbolic surfaces have full support, Acta Math., Volume 220 (2018) no. 2, pp. 297-339 | DOI | MR
[4] Juri V. Egorov Über kanonische Transformationen von Pseudodifferentialoperatoren, Usp. Mat. Nauk, Volume 24 (1969) no. 5(149), pp. 235-236 | Zbl
[5] Jeffrey Galkowski; Zhen Huang; Maciej Zworski Classical-Quantum correspondence in Lindblad evolution (2024) | arXiv
[6] Lars Hörmander Pseudo-differential operators of type 1,1, Commun. Partial Differ. Equations, Volume 13 (1988) no. 9, pp. 1085-1111 | DOI | Zbl
[7] Jürgen Moser On the volume elements on a manifold, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286-294 | DOI | MR | Zbl
[8] Maciej Zworski Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | DOI | MR | Zbl
Cité par Sources :