Consider a non-local (i.e., involving a convolution term) conservation law: when the convolution term converges to a Dirac delta, in the limit we formally recover a classical (or “local”) conservation law. In this note we overview recent progress on this so-called non-local to local limit and in particular we discuss the case of anistropic kernels, which is extremely relevant in view of applications to traffic models. We also provide a new proof of a related compactness estimate.
Keywords: non-local to local limit, non-local conservation laws, singular local limit, traffic models.
Maria Colombo 1 ; Gianluca Crippa 2 ; Elio Marconi 3 ; Laura V. Spinolo 4
@incollection{JEDP_2023____A10_0, author = {Maria Colombo and Gianluca Crippa and Elio Marconi and Laura V. Spinolo}, title = {An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:10}, pages = {1--14}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2023}, doi = {10.5802/jedp.681}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.681/} }
TY - JOUR AU - Maria Colombo AU - Gianluca Crippa AU - Elio Marconi AU - Laura V. Spinolo TI - An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate JO - Journées équations aux dérivées partielles N1 - talk:10 PY - 2023 SP - 1 EP - 14 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.681/ DO - 10.5802/jedp.681 LA - en ID - JEDP_2023____A10_0 ER -
%0 Journal Article %A Maria Colombo %A Gianluca Crippa %A Elio Marconi %A Laura V. Spinolo %T An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate %J Journées équations aux dérivées partielles %Z talk:10 %D 2023 %P 1-14 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.681/ %R 10.5802/jedp.681 %G en %F JEDP_2023____A10_0
Maria Colombo; Gianluca Crippa; Elio Marconi; Laura V. Spinolo. An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate. Journées équations aux dérivées partielles (2023), Exposé no. 10, 14 p. doi : 10.5802/jedp.681. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.681/
[1] On the numerical integration of scalar nonlocal conservation laws, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 1, pp. 19-37 | DOI | Numdam | MR | Zbl
[2] On nonlocal conservation laws modelling sedimentation, Nonlinearity, Volume 24 (2011) no. 3, pp. 855-885 | DOI | MR | Zbl
[3] Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., Volume 132 (2016) no. 2, pp. 217-241 | DOI | MR | Zbl
[4] On traffic flow with nonlocal flux: a relaxation representation, Arch. Ration. Mech. Anal., Volume 237 (2020) no. 3, pp. 1213-1236 | DOI | MR | Zbl
[5] Entropy admissibility of the limit solution for a nonlocal model of traffic flow, Commun. Math. Sci., Volume 19 (2021) no. 5, pp. 1447-1450 | DOI | MR | Zbl
[6] Propagation of chaos for Burgers’ equation, Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. A, Volume 39 (1983) no. 1, pp. 85-97 | Numdam | MR | Zbl
[7] An overview of non-local traffic flow models, Mathematical descriptions of traffic flow: micro, macro and kinetic models. Selected papers based on the presentations of the mini-symposium at ICIAM 2019, Valencia, Spain, July 2019, Springer, 2021, pp. 79-91 | DOI | MR | Zbl
[8] Oleĭnik-type estimates for nonlocal conservation laws and applications to the nonlocal-to-local limit (2023) (to appear in J. Hyperbolic Differ. Equ.) | arXiv
[9] A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 40 (2022) no. 5, pp. 1205-1223 | DOI | Zbl
[10] Singular limits with vanishing viscosity for nonlocal conservation laws, Nonlinear Anal., Theory Methods Appl., Volume 211 (2021), 112370, 12 pages | DOI | MR | Zbl
[11] A nonlocal Lagrangian traffic flow model and the zero-filter limit, Z. Angew. Math. Phys., Volume 75 (2024) no. 2, 66, 31 pages | MR | Zbl
[12] On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021) no. 6, pp. 2705-2723 | DOI | MR | Zbl
[13] Local limit of nonlocal traffic models: convergence results and total variation blow-up, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 5, pp. 1653-1666 | Numdam | MR | Zbl
[14] Nonlocal traffic models with general kernels: singular limit, entropy admissibility, and convergence rate, Arch. Ration. Mech. Anal., Volume 247 (2023) no. 2, p. 32 | DOI | MR | Zbl
[15] On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., Volume 233 (2019) no. 3, pp. 1131-1167 | DOI | MR | Zbl
[16] A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 4, 1150023, 34 pages | DOI | MR | Zbl
[17] Control of the continuity equation with a non local flow, ESAIM, Control Optim. Calc. Var., Volume 17 (2011) no. 2, pp. 353-379 | DOI | Numdam | MR | Zbl
[18] Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, NoDEA, Nonlinear Differ. Equ. Appl., Volume 20 (2013) no. 3, pp. 523-537 | DOI | MR | Zbl
[19] Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer, 2016, xxxviii+826 pages | DOI | MR
[20] A space-time nonlocal traffic flow model: relaxation representation and local limit, Discrete Contin. Dyn. Syst., Volume 43 (2023) no. 9, pp. 3456-3484 | DOI | MR | Zbl
[21] Conservation laws with nonlocal velocity: the singular limit problem, SIAM J. Appl. Math., Volume 84 (2024) no. 2, pp. 497-522 | DOI | MR | Zbl
[22] Existence, uniqueness and regularity results on nonlocal balance laws, J. Differ. Equations, Volume 263 (2017) no. 7, pp. 4023-4069 | DOI | MR | Zbl
[23] On approximation of local conservation laws by nonlocal conservation laws, J. Math. Anal. Appl., Volume 475 (2019) no. 2, pp. 1927-1955 | DOI | MR | Zbl
[24] On the singular limit problem for nonlocal conservation laws: A general approximation result for kernels with fixed support (2023) | arXiv
[25] First order quasilinear equations with several independent variables, Mat. Sb., N. Ser., Volume 81 (1970), pp. 228-255 | MR
[26] Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation, USSR Comput. Math. Math. Phys., Volume 16 (1978) no. 6, pp. 105-119 | DOI | Zbl
[27] On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955), pp. 317-345 | MR | Zbl
[28] Shock waves on the highway, Oper. Res., Volume 4 (1956) no. 1, pp. 42-51 | DOI | MR | Zbl
[29] On a nonlocal dispersive equation modeling particle suspensions, Q. Appl. Math., Volume 57 (1999) no. 3, pp. 573-600 | DOI | MR | Zbl
Cité par Sources :