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An overview on the local limit of non-local conservation laws, and a
new proof of a compactness estimate

Maria Colombo Gianluca Crippa Elio Marconi Laura V. Spinolo

Abstract

Consider a non-local (i.e., involving a convolution term) conservation law: when the convolution
term converges to a Dirac delta, in the limit we formally recover a classical (or “local”) conservation
law. In this note we overview recent progress on this so-called non-local to local limit and in particular
we discuss the case of anistropic kernels, which is extremely relevant in view of applications to traffic
models. We also provide a new proof of a related compactness estimate.

1. Introduction

In recent years, the analysis of non-local conservation laws in the form
∂tu + ∂x[V (u ∗ η)u] = 0 (1.1)

has attracted considerable attention. In the previous expression, the unknown u is real-valued and
depends on the variables (t, x) ∈ R+ ×R. The Lipschitz continuous function V : R → R is assigned
and so is the convolution kernel η : R → R+. The symbol ∗ denotes the convolution with respect
to the space variable only. The analysis of (1.1) and of related equations is motivated by several
applications concerning sedimentation [2], supply chains [17], pedestrian [16] and vehicular [7]
traffic models, and others. Existence and uniqueness results have been obtained under suitable
assumptions in various works, see for instance [3, 16, 18, 22].

In the present contribution we focus on the so-called non-local to local limit problem, which we
now introduce. Fix ε > 0 and consider the family of Cauchy problems{

∂tuε + ∂x[V (uε ∗ ηε)uε] = 0
uε(0, · ) = u0

with ηε(x) := 1
ε

η
(x

ε

)
, (1.2)

where the initial datum u0 : R → R satisfies suitable assumptions discussed in the following. In the
non-local to local limit ε → 0+ the convolution kernel ηε

∗
⇀ δx=0 weakly-∗ in the sense of measures.

Consequently, what one formally recovers in the vanishing ε limit is the scalar conservation law{
∂tu + ∂x[V (u)u] = 0
u(0, · ) = u0.

(1.3)

Whether or not one can rigorously establish the convergence of uε to the entropy admissible solution
of the conservation law (1.3) has been the target of recent investigations, that we briefly overview
in the next section. We refer instead to the very classical references [19, 25] for the definition of
entropy admissible solutions of a conservation law.

M.C. is partially supported by NSF Grant XYZPDQ. G.C. is supported by SNF Project 212573 FLUTURA Fluids, Turbulence,
Advection. E.M. and L.V.S. are members of the PRIN 2022 PNRR Project P2022XJ9SX and of the GNAMPA group of INDAM.
E.M. is supported by the European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant
No. 101025032. LVS is a member of the PRIN 2020 Project 20204NT8W4, of the PRIN 2022 Project 2022YXWSLR, and of the CNR
FOE 2022 Project STRIVE..
2020 Mathematics Subject Classification: 35L65.
Keywords: non-local to local limit, non-local conservation laws, singular local limit, traffic models.

X–1

https://gdredp.math.cnrs.fr/
http://www.cnrs.fr


This note is organized as follows: in Section 2 we discuss recent results on the non-local to local
limit. In Section 3 and Section 4 we provide an alternative proof of the main compactness estimate
in [14] concerning the non-local to local limit, which is estimate (2.11) below. The proof of (2.11)
we discuss here is longer and less direct than the original one given in [14], but we think it is of
interest as we feel it is more transparent as it more clearly elucidates the basic mechanism yielding
compactness. In Section 3 we discuss an heuristic argument, whereas in Section 4 we provide the
complete proof.

2. The non-local to local limit: an overview

Let us consider the family of Cauchy problems (1.2): one of the main challenges in studying the
vanishing ε limit is that, owing to the presence of the non-local term, it is fairly hard to gain explicit
insights on the precise behavior of the solution, and henceforth useful compactness estimates. Note
furthermore that, if u0 ∈ L1(R), it is fairly easy to establish bounds on ∥uε(t, · )∥L1(R) that are
uniform in ε and t. This in turn implies that, up to subsequences, the family uε converges to some
limit measure weakly∗ in the sense of measures on [0, T ] × R, for every T > 0. However, weak
convergence alone does not suffice to pass to the limit in the nonlinear term V (uε ∗ ηε)uε and
henceforth to pass from (1.2) to (1.3).

To the best of our knowledge, one of the very first results concerning the vanishing ε limit is the
paper by Zumbrun [29], where, among other things, the author establishes convergence of uε to the
entropy admissible solution u of (1.3) under the assumptions that η is even, that is η(x) = η(−x),
and (quite restrictively) that u is smooth.

The non-local to local limit problem is again addressed in the more recent paper [1] and inves-
tigated by relying on numerical experiments. The numerical simulations exhibited in [1] suggest
that, as ε gets closer and closer to 0, the solution uε of (1.2) approaches the entropy admissible
solution of (1.3). In [15] the authors provide counter-examples showing that actually this is not
always the case. More precisely, the counter-examples dictate that in general uε does not converge
to the entropy admissible solution, not even weakly or up to subsequences. This is very loosely
speaking achieved by singling out a property (a different one in each counter-example) which is
satisfied by the solution uε of (1.2) for every ε, passes to the limit, but is not satisfied by the
entropy admissible solution of (1.3). Another result in [15] focuses on the “viscous counter-part”
of the non-local to local limit problem. More precisely, fix ν > 0 and consider the family of viscous
non-local problems{

∂tuεν + ∂x[V (uεν ∗ ηε)uεν ] = ν∂xxuεν

uεν(0, · ) = u0
with ηε(x) := 1

ε
η

(x

ε

)
. (2.1)

Existence and uniqueness results for (2.1) can be established by relying on fairly standard tech-
niques, see [15, Section 2]. Extending previous results by Calderoni and Pulvirenti [6], Theorem 1.1
in [15] states that, under quite general assumptions on V , η and u0, the solutions uεν converge as
ε → 0+ to the solution of the viscous conservation law{

∂tuν + ∂x[V (uν)uν ] = ν∂xxuν

uν(0, · ) = u0.
(2.2)

This result is also relevant from the numerical viewpoint, see the related discussion in [12]. Wrap-
ping up, one has the following diagram:

∂tuεν + ∂x

[
uενV (uεν ∗ ηε)

]
= ν∂xxuεν

ε→0+

−−−−−−−−−−−→
[15, Theorem 1.1]

∂tuν + ∂x

[
uνV (uν)

]
= ν∂xxuν

ν→0+

y[15, Proposition 1.2] ν→0+

yKružkov’s Theorem

∂tuε + ∂x

[
uεV (uε ∗ ηε)

]
= 0 ε→0+

−−−−−−−−−−−→
False in general

∂tu + ∂x

[
uV (u)

]
= 0

(2.3)

Note that the “vertical” convergence at the left of the previous diagram follows from Proposition 1.2
in [15] and relies on the extension of classical parabolic compactenss estimates to the nonlocal
setting, whereas the convergence of the solutions of the viscous conservation law to the entropy
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admissible solution of (1.3) dates back to the by-now classical work of Kružkov [25]. See also [10]
for more recent results on the “diagonal” convergence in the previous diagram.

Going back to the original (non-viscous) non-local to local limit problem, the above mentioned
counter-examples in [15] left open the possibility of establishing convergence in a more specific
setting. As a matter of fact, in the last very few years several results have been obtained under
assumptions that are fairly natural in view of applications to traffic flow models, which we now
discuss.

The archetype of fluido-dynamic traffic models is the celebrated LWR model, introduced in the
works by Lighthill and Whitham [27] and Richards [28], which involves a conservation law like the
one at the first line of (1.3). In the LWR model the unknown u represents the density of vehicles,
and V their speed. The model postulates that drivers tune their speed based on the pointwise traffic
density, and, since the most common reaction to an increase in the car density is deceleration, the
assumptions usually imposed on V are

V ∈ Lip(R), V ′ ≤ 0. (2.4)

We now turn to the assumptions satisfied by the datum u0: since it represents the initial den-
sity, one assumes u0 ≥ 0. The datum u0 should also not exceed the maximum possible density
(corresponding to bumper-to-bumper packing), which with no loss of generality we can assume
normalized to 1. Wrapping up,

u0 ∈ L∞(R), 0 ≤ u0(x) ≤ 1 for a.e. x ∈ R. (2.5)

Let us now turn to the non-local LWR model (1.1): compared to the classical one, this version of
the model aims at taking into account that drivers tune their speed according to the car density in
a suitable neighborhood of their position, rather than to the pointwise density only. Also, it turns
out that the presence of the convolution term in (1.1) rules out the possible presence of infinite
acceleration, a well-known drawback of the classical LWR model. The hypotheses most commonly
imposed on η in non-local LWR models are then

η ∈ L1(R) ∩ L∞(R), η ≥ 0,

∫
R

η(x) dx = 1, supp η ⊆ R−, η non-decreasing on R−. (2.6)

The first three conditions in (2.6) are fairly standard assumptions for convolution kernels. More
interesting is the second-last condition, a “look-ahead-only” assumption that takes into account
that drivers tune their speed according to the downstream traffic density only. Finally, the last
condition in (2.6) expresses the fact that drivers are more deeply influenced by closer vehicles
rather than by those that are further away.

The analysis on the non-local LWR model (1.2) under (2.4),(2.5) and (2.6) was initiated by
Blandin and Goatin [3], who in particular established the maximum principle

0 ≤ uε(t, x) ≤ 1 for a.e. (t, x) ∈ R+ × R, (2.7)

a remarkable property in view of applications that is not satisfied by general non-local conservation
laws. Keimer and Pflug [23] were instead the first, to the best of our knowledge, to investigate,
under the further assumption that the initial datum u0 is a monotone function, the local limit of
the non-local LWR model. In [4, 5] Bressan and Shen established convergence for general initial
data of bounded total variation and bounded away from 0. The analysis in [4, 5] relies on a change
of variables that allows to rewrite the equation at the first line of (1.2) as a system with relaxation,
and requires that η(x) = ex

1R−(x), where 1R− denotes the characteristic function of the negative
real axis. In [13] we established convergence under quite general assumptions on the convolution
kernel η, but requiring more restrictive assumptions than in [4, 5] on the initial datum.

Without entering the details, an important technical point is that a key issue in all the above
works [4, 5, 13, 23] is showing that, under the different assumptions considered in each paper, the
total variation TotVar uε(t, · ) is uniformly bounded in ε and t. Owing to the Helly–Kolmogorov–
Fréchet Theorem, this yields compactness of the family {uε(t, · )} (some more work is then required
to show that uε converges to the entropy admissible solution of (1.3)). As a matter of fact, the
prevailing feeling in the nonlocal conservation laws community was that the assumptions (2.4), (2.5)
and (2.6) should suffice to establish a uniform bound on TotVar uε(t, · ): this was also supported
by numerical evidence, see [1, 3]. However, in [13] we exhibit a counter-example showing that
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actually this is not always the case: in [13, Section 4] we construct an initial datum u0 such that
TotVar u0 < +∞, but the solution of (1.2) satisfies

sup
ε>0

TotVar uε(t, · ) = +∞, for every t > 0. (2.8)

This happens when V (u) = 1 − u and for a fairly large class of convolution kernels satisfying (2.6).
In particular, the choice η(x) = ex

1R−(x) is possible, and the reason why the counter-example does
not contradict the uniform bounds established in [4, 13] is because the initial datum u0 triggering
the total variation blow-up attains the value 0, which is not allowed in [4, 13]. And indeed, by
looking at the construction of the counter-example, one realizes that the fact that u0 vanishes on
suitable intervals is essential in the proof of (2.8).

We remark in passing that the maximum principle (2.7) yields compactnes in the L∞ weak-∗
topology, but, as pointed out before, owing to non-linearity weak convergence alone does not suffice
to pass to the limit in (1.2) to get (1.3). Wrapping up, the total variation blow up (2.8) apparently
sets severe constraints on the possibility of establishing convergence in the non-local to local limit.
An elegant way out this obstruction was found in the paper [9]: rather than uε, the authors consider
the convolution term

wε(t, x) := uε ∗ ηε(t, x) = 1
ε

∫ +∞

x

η

(
x − y

ε

)
uε(t, y) dy (2.9)

and prove that, under suitable assumptions, the total variation TotVar wε(t, · ) is a monotone non-
increasing function of time, and as such uniformly bounded in ε and t > 0. In other words, the
total variation of uε(t, · ) may blow up, but considering the convolution term allows to gain a bit
of regularity sufficient to establish total variation bounds. As a drawback, the analysis in [9], as
the one in [4, 5], is restricted to the case η(x) = ex

1R−(x), which entails the algebraic identity

uε = wε − ε∂xwε.

The above identity, in turn, allows the authors of [9] to find an equation for wε which does not
contain terms involving uε (every time the authors have one such term, they replace it by using the
above identity), and this is crucially used in the proof of the total variation bound. The convergence
argument is then quickly concluded by relying on the argument in [4, 5]. See also [8] for other recent
results on the non-local to local limit in the case of exponential kernels.

In the recent paper [14] we extend the analysis in [9] by removing the assumption that η(x) =
ex
1R−(x). More precisely, in [14] we only impose conditions (2.6), entirely natural in view of

applications to traffic models, plus the convexity assumption

η is convex on R−, (2.10)

that we discuss in the following. We now quote [14, Theorem 1.1].

Theorem 1. Assume that u0, V and η satisfy (2.4), (2.5), and (2.6), (2.10), respectively. Assume
furthermore that TotVar u0 < +∞. Then

TotVar wε(t, · ) ≤ TotVar wε(0, · ) for every ε > 0 and a.e. t > 0, (2.11)

where wε is the same as in (2.9).

Once more, we remark that all assumptions (2.4), (2.5), and (2.6) are entirely consistent with
the traffic models framework. In the next two sections we provide a proof of Theorem 1 alternative
to the original one in [14]. For the time being we point out that by relying on (2.11) and some
further elementary arguments it is fairly easy to see that, up to subsequences,

wε → u strongly in L1
loc(R+ × R), uε

∗
⇀ u weakly∗ in L∞(R+ × R), (2.12)

where u is a distributional solution of the Cauchy problem (1.3). What a priori is not at all clear
is that u is the entropy admissible solution of (1.3): to get this, we introduce a new and fairly
general entropy admissibility criterion for non-local to local limits, see [14, Theorem 1.2], which
eventually concludes the convergence proof. By relying on an argument due to Kuznetsov [26]
we also get a convergence rate, see [14, Theorem 1.3]. What is left to be discussed is (2.10), the
only one among of our assumptions that is not entirely natural in view of the applications to
traffic models: for instance, a convolution kernel commonly used in applications is η(x) = 1[−1,0],
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which violates (2.10). It turns out that, if η does not satisfy (2.10), then our main compactness
estimate (2.11) fails in general: an explicit counter-example is constructed in [14, Section 6].

To conclude our overview, we touch upon a recent work concerning a problem closely related
to (1.2). In [21] the authors consider the “non-local in velocity” problem{

∂tuε + ∂x[(V (uε) ∗ ηε)uε] = 0
uε(0, · ) = u0

with ηε(x) := 1
ε

η
(x

ε

)
, (2.13)

where the convolution is applied to the velocity function directly, rather than on the solution uε.
Note that (2.13) coincides with (1.2) in the linear case V (u) = 1 − u, but differs in general. In [21]
the authors show that the solution uε of (1.2) converge to the entropy admissible solution of (1.2)
if either u0 is monotone or η(x) = ex

1R−(x). See also [11, 20, 24] for other recent work concerning
problems related to (1.2).

3. Proof of Theorem 1: heuristic argument

In this section we discuss an handwaving argument for the total variation estimate (2.11), which
we hope provides the main idea underpinning the rigorous argument. The complete proof is then
established in the next section.

3.1. Preliminary results
We briefly recall some known results (see for instance [14]) that we need in the following. First,
owing to (2.7) we have

0 ≤ wε(t, x) ≤ 1 for a.e. (t, x) ∈ R+ × R. (3.1)
Second, wε is a Lipschitz continuous function, wε ∈ W 1,∞(R+ × R). To fix the notation, we also
introduce the characteristic line Xε(·, x, s), which is the solution of the Cauchy problem{

dXε

dt = V (wε(t, Xε))
Xε(s, x, s) = x.

(3.2)

A straightforward computation yields the expression for the material derivative of wε, namely

∂twε + V (wε)∂xwε = 1
ε2

∫ +∞

x

η′
(

x − y

ε

)
[V (wε(t, x)) − V (wε(t, y))]uε(t, y) dy. (3.3)

Also, one can also show that the map g : R+ → R define by setting

g(t) := TotVar wε(t, · ) (3.4)

is Lipschitz continuous. To conclude, we state a known and elementary result on Lipschitz contin-
uous functions that we need in the following, and provide the proof for the sake of completeness.

Lemma 2. Let I ⊆ R be an open interval and f, g : I → R two Lipschitz continuous functions
such that f ≤ g on I. If f and g are both differentiable at the point t∗ ∈ I and f(t∗) = g(t∗) then
f ′(t∗) = g′(t∗).

Proof. Up to replacing f by f −g, we can assume with no loss of generality that g = 0. Since f ≤ 0
and f(t∗) = 0 then t∗ is a point of maximum for f , which yields f ′(t∗) = 0. □

3.2. The heuristic argument
Recall (3.4) and assume for a moment that we have shown that

g′(t∗) ≤ 0 (3.5)

at every point t∗ at which the map (3.4) is differentiable. An integration in time then yields (2.11).
In our heuristic argument we establish (3.5) at every point t∗ of differentiability for g that

satisfies some further suitable conditions. More precisely, we assume that at time t∗ the map
wε(t∗, · ) is compactly supported and has a finite number of local maxima and local minima. To
focus on the main issues and make the other details as simple as possible, we perform the explicit
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x
x1 x2 x3

Figure 3.1: In blue the function wε(t∗, · ) in the heuristic argument.

computations in the case where wε(t∗, · ) has exactly two local maxima, which we term x1 and x3,
and one local minimum, which we term x2, satisfying

x1 < x2 < x3. (3.6)

See Figure 3.1 for a representation. The analysis extends to the case of finitely many extrema, at
the price of some elementary but rather tedious computations (see also the argument in Section 4).
We now set

f(t) := 2
[
wε(t∗, Xε(t, x1, t∗)) − wε(t∗, Xε(t, x2, t∗)) + wε(t∗, Xε(t, x3, t∗))

]
, (3.7)

where Xε is the same as in (3.2), and recall (3.4). Note that f(t) ≤ g(t) for every t ≥ 0. Under our
assumptions on wε(t∗, · ) (see Figure 3.1) we also have

g(t∗) = TotVar wε(t∗, · ) = 2
[
wε(t∗, x1) − wε(t∗, x2) + wε(t∗, x3)

]
= f(t∗). (3.8)

By applying Lemma 2 we conclude that to establish (3.5) it suffices to show that

f ′(t∗) ≤ 0. (3.9)

Towards this end, we recall the expression (3.3) for the material derivative, and conclude that

f ′(t∗) = 2
[

1
ε2

∫ +∞

x1

η′
(

x1 − y

ε

)
[V (wε(t∗, x1)) − V (wε(t∗, y))]uε(t∗, y)dy

− 1
ε2

∫ +∞

x2

η′
(

x2 − y

ε

)
[V (wε(t∗, x2)) − V (wε(t∗, y))]uε(t∗, y)dy

+ 1
ε2

∫ +∞

x3

η′
(

x3 − y

ε

)
[V (wε(t∗, x3)) − V (wε(t∗, y))]uε(t∗, y)dy

]
.
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We now recall (3.6) and rearrange the above terms as

f ′(t∗) = 2
[

1
ε2

∫ x2

x1

η′
(

x1 − y

ε

)
[V (wε(t∗, x1)) − V (wε(t∗, y))]uε(t∗, y)dy︸ ︷︷ ︸

:=I1

+ 1
ε2

∫ +∞

x2

η′
(

x1 − y

ε

)
[V (wε(t∗, x1)) − V (wε(t∗, x2))]uε(t∗, y)dy︸ ︷︷ ︸

:=I2

+ 1
ε2

∫ x3

x2

[
η′

(
x1 − y

ε

)
− η′

(
x2 − y

ε

)]
[V (wε(t∗, x2)) − V (wε(t∗, y))]uε(t∗, y)dy︸ ︷︷ ︸

:=I3

+ 1
ε2

∫ +∞

x3

[
η′

(
x1 − y

ε

)
− η′

(
x2 − y

ε

)]
[V (wε(t∗, x2)) − V (wε(t∗, x3))]uε(t∗, y)dy︸ ︷︷ ︸

:=I4

+ 1
ε2

∫ +∞

x3

[
η′

(
x1 − y

ε

)
− η′

(
x2 − y

ε

)
+ η′

(
x3 − y

ε

)]
[V (wε(t∗, x3)) − V (wε(t∗, y))]uε(t∗, y)dy︸ ︷︷ ︸

:=I5

]
.

To control I1 and I2, we recall that by assumption (see Figure 3.1)

wε(t∗, x1) ≥ wε(t∗, y) for every y ∈ [x1, x2]
V ′≤0=⇒ V (wε(t∗, x1)) ≤ V (wε(t∗, y)) for every y ∈ [x1, x2].

Since η′ ≥ 0 owing to (2.6) and uε ≥ 0 by (3.1), this yields I1 ≤ 0, I2 ≤ 0. To control I3 and I4,
we point out that

wε(t∗, x2) ≤ wε(t∗, y) for every y ∈ [x2, x3]
V ′≤0=⇒ V (wε(t∗, x2)) ≥ V (wε(t∗, y)) for every y ∈ [x2, x3].

Since by assumption (2.10) the function η′ is monotone non-decreasing on R−, we have

η′
(

x1 − y

ε

)
≤ η′

(
x2 − y

ε

)
and hence I3 ≤ 0, I4 ≤ 0. We are left to control I5. By arguing as before, we have

wε(t∗, x3) ≥ wε(t∗, y) for every y ∈ [x3, +∞[
V ′≤0=⇒ V (wε(t∗, x3)) ≤ V (wε(t∗, y)) for every y ∈ [x3, +∞[

and

η′
(

x1 − y

ε

)
− η′

(
x2 − y

ε

)
+ η′

(
x3 − y

ε

)
η′≥0
≥ −η′

(
x2 − y

ε

)
+ η′

(
x3 − y

ε

)
(2.10)

≥ 0.

This yields I5 ≤ 0 and hence concludes the proof of (3.9).

4. Rigorous proof of Theorem 1

In this section we provide the complete proof of (2.11). In Section 4.1 we establish it under some
further assumptions on the data, which are then removed through a fairly standard approximation
argument in Section 4.2.

4.1. Proof under further assumptions on the data
Since TotVar u0 < +∞, then there are u−, u+ ∈ [0, 1] such that

lim
x→−∞

u0(x) = u−, lim
x→+∞

u0(x) = u+. (4.1)
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In this paragraph we establish (2.11) under the further assumptions

η ∈ C2(]−∞, 0[), η′′ ∈ L1(]−∞, 0[) (4.2)

and
u0 ∈ Lip(R), u0(x) = u+ for every x ≥ R, (4.3)

for some suitable R > 0. We now fix T > 0 once and for all and establish the inequality in (2.11)
for every t ∈ [0, T ]. By the arbitrariness of T , this implies that (2.11) holds for every t > 0. We
proceed according to the following steps.

Step 1. We point out that (4.3) yields

wε(t, x) = u+ for every t > 0 and x ≥ R + V (u+)t. (4.4)

Very loosely speaking, this is due to the fact that, by the kernel anisotropy, along the characteristic
line Xε(·, R, 0) the convolution term only “sees” the value u+, which in turn owing to (3.2) implies
that the speed of this characteristic line is exactly V (u+). Property (4.4) can then be rigorously
established by following the same argument sketched after the statement of [13, Lemma 13]. Once
can also show that

lim
x→−∞

wε(t, x) = u− for every t ∈ [0, T ], (4.5)

where u− is the same as in (4.1).

Step 2. We recall that owing to (2.4) V (0) is the highest possible value attained by V (wε), we fix
N ∈ N such that N ≥ R and set

TotVarN wε(t, · )

:= sup
{

|wε(t, x1) − u−| +
N−1∑
i=1

|wε(t, xi+1) − wε(t, xi)| :
Xε(t, −N, 0) ≤ x1 ≤ · · · ≤ xN

= N + V (u+)t

}
, (4.6)

where Xε is the same as in (3.2) and, owing to (4.4), N + V (u+)t = Xε(t, N, 0). Owing to (4.5) we
have

TotVar wε(t, · ) = lim
N→+∞

TotVarN wε(t, · ) = sup
N∈N

TotVarN wε(t, · ). (4.7)

By Step 2 in the proof of [14, Theorem 1.1], we have TotVar wε(t, · ) < +∞ for every t ≥ 0, and
owing to (4.7) this implies TotVarN wε(t, · ) < +∞ for every t ≥ 0. We now establish some further
properties of TotVarN wε(t, · ).

Step 2A. We show that the sup in (4.6) is attained, i.e. for every t ∈ [0, T ] and every N ≥ R there
are N points x1 ≤ x2 · · · ≤ xN such that

TotVarN wε(t, · ) = |wε(t, x1) − u−| +
N−1∑
i=1

|wε(t, xi+1) − wε(t, xi)|. (4.8)

Fix t ∈ [0, T ], N ≥ R and a maximizing sequence x1k, . . . , xNk for |wε(t, x1) − u−| +∑N−1
i=1 |wε(t, xi+1) − wε(t, xi)|. We now point out that the points are all confined in the compact

set [Xε(t, −N, 0), N + V (u+)t], and conclude that up to subsequences the maximizing sequences
converge to some limit points x1, . . . , xN satisfying (4.8).

Step 2B. We show that the map t 7→ TotVarN wε(t, · ) is Lipschitz continuous, and henceforth
a.e. differentiable. To this end we fix t1, t2 ∈ [0, T ] and assume without loss of generality that
TotVarN wε(t1, · ) ≤ TotVarN wε(t2, · ). We rely on Step 2A and find x1, . . . , xN , such that (4.8)
holds at t = t1. By recalling definition (4.6) we infer that

TotVarN wε(t2, · ) ≤ |wε(t2, Xε(t2, x1, t1)) − u−|

+
N−1∑
i=1

|wε(t2, Xε(t2, xi+1, t1)) − wε(t2, Xε(t2, xi, t1))|,
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which implies that

|TotVarN wε(t2, · ) − TotVarN wε(t1, · )| = TotVarN wε(t2, · ) − TotVarN wε(t1, · )

≤ |wε(t2, Xε(t2, x1, t1)) − u−| − |wε(t1, x1) − u−|

+
N−1∑
i=1

|wε(t2, Xε(t2, xi+1, t1)) − wε(t2, Xε(t2, xi, t1))| − |wε(t1, xi+1) − wε(t1, xi)|

≤ |wε(t2, Xε(t2, x1, t1)) − wε(t1, x1)| +
N−1∑
i=1

|wε(t2, Xε(t2, xi+1, t1)) − wε(t1, xi+1)|

+
N−1∑
i=1

|wε(t2, Xε(t2, xi, t1)) − wε(t1, xi)|.

Since the functions Xε and wε are both Lipschitz continuous this concludes Step 2B.

Step 3. We now fix N ≥ R and t∗ ∈ ]0, T [ such that the map t 7→ TotVarN wε(t, · ) is differentiable
at t∗. Assume for a moment that we have shown that

d
dt

TotVarN wε(t, · )
∣∣∣∣
t=t∗

≤ 0. (4.9)

Owing to the arbitrariness of t∗ by integrating in time we get

TotVarN wε(t, · ) ≤ TotVarN wε(0, · )
(4.7)
≤ TotVar wε(0, · )

and owing to (4.7) this yields (2.11). To establish (4.9) we set

g(t) := TotVarN wε(t, · ) (4.10)

and point out that, owing to Step 2B, the function g : [0, T ] → R+ is Lipschitz continuous. Next,
we fix t∗ at which g is differentiable, recall Step 2A and fix x1, . . . , xN = N + V (u+)t∗ such that

TotVarN wε(t∗, · ) = |wε(t∗, x1) − u−| +
N−1∑
i=1

|wε(t∗, xi+1) − wε(t∗, xi)|. (4.11)

Up to removing some intermediate points and relabeling the points (if needed) we find m ≤ N
such that x1 < x2 < · · · < xm = N + V (u+)t are all distinct points and one of the following two
cases is verified:

(i) either

wε(t∗, x1) ≥ u−, wε(t∗, xi) ≥ wε(t∗, y) for every y ∈ [xi, xi+1], i = 1, . . . , m − 1 odd (4.12)

and

wε(t∗, xi) ≤ wε(t∗, y) for every y ∈ [xi, xi+1] and i = 2, . . . , m − 1 even, (4.13)

(ii) or

wε(t∗, x1) ≤ u−, wε(t∗, xi) ≤ wε(t∗, y) for every y ∈ [xi, xi+1], i = 1, . . . , m − 1 odd

and

wε(t∗, xi) ≥ wε(t∗, y) for every y ∈ [xi, xi+1] and i = 2, . . . , m − 1 even,
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We now focus on case (i) above. The proof in case (ii) is similar. Note that in case (i), recalling
that wε(t∗, xm) = u+, we have

g(t∗) (4.10)= TotVarN wε(t∗, · ) = wε(t∗, x1) − u− +
m−1∑
i=1

|wε(t∗, xi+1) − wε(t∗, xi)|

= −u− +


−u+ + 2

m−1∑
i=1

(−1)i+1wε(t∗, xi) m even

u+ + 2
m−1∑
i=1

(−1)i+1wε(t∗, xi) m odd.

(4.14)

We recall the notation (3.2) and set

f(t) := −u− +


−u+ + 2

m−1∑
i=1

(−1)i+1wε(t∗, Xε(t, xi, t∗)) m even

u+ + 2
m−1∑
i=1

(−1)i+1wε(t∗, Xε(t, xi, t∗)) m odd.

(4.15)

Note that f(t) ≤ g(t) for every t ∈ [0, T ], where g is the same as in (4.10). By recalling (4.14) and
Lemma 2 we conclude that to establish (4.9) it suffices to show that f ′(t∗) ≤ 0.

Step 4. By combining (3.3) and (4.15) we get

f ′(t∗) = 2
m−1∑
i=1

(−1)i+1

ε2

∫ +∞

xi

η′
(

x − y

ε

)
[V (wε(t∗, xi)) − V (wε(t, y))]uε(t∗, y) dy

= 2
ε2

m−1∑
i=1

∫ xi+1

xi

σi(t∗, y)uε(t∗, y) dy + 2
ε2

∫ +∞

xm

σm(t∗, y)uε(t∗, y) dy

(4.16)

where

σ1(t∗, y) = η′
(

x1 − y

ε

)
[V (wε(t∗, x1)) − V (wε(t∗, y))] (4.17)

and

σi(t∗, y) =
i−1∑
j=1

[
j∑

k=1
(−1)k+1η′

(
xk − y

ε

)]
[V (wε(t∗, xj) − V (wε(t∗, xj+1)]

+
[

i∑
k=1

(−1)k+1η′
(

xk − y

ε

)]
[V (wε(t∗, xi)) − V (wε(t∗, y))] i ≥ 2. (4.18)

To verify the above formula we rely on an induction argument. By a straightforward computation,
the formula is verified for i = 2. Let us now assume that it holds at the i-th step, and check that
it is also verified at the (i + 1)-th. We have

σi+1(t∗, y) = σi(t∗, y) + (−1)i+2η′
(

xi+1 − y

ε

)
[V (wε(t∗, xi+1)) − V (wε(t∗, y))]

(4.18)=
i−1∑
j=1

[
j∑

k=1
(−1)k+1η′

(
xk − y

ε

)]
[V (wε(t∗, xj) − V (wε(t∗, xj+1)]

+
[

i∑
k=1

(−1)k+1η′
(

xk − y

ε

)]
[V (wε(t∗, xi)) − V (wε(t∗, y))]

+ (−1)i+2η′
(

xi+1 − y

ε

)
[V (wε(t∗, xi+1)) − V (wε(t∗, y))]
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and hence

σi+1(t∗, y) =
i−1∑
j=1

[
j∑

k=1
(−1)k+1η′

(
xk − y

ε

)]
[V (wε(t∗, xj) − V (wε(t∗, xj+1)]

+
[

i∑
k=1

(−1)k+1η′
(

xk − y

ε

)]
[V (wε(t∗, xi)) − V (wε(t∗, xi+1))]

+
i+1∑
k=1

(−1)k+1η′
(

xk − y

ε

)
[V (wε(t∗, xi+1)) − V (wε(t∗, y))],

which is consistent with (4.18).

Step 5. We recall that uε ≥ 0 owing to (3.1), and by plugging this inequality in (4.16) we conclude
that to show that f ′(t∗) ≤ 0 it suffices to show that

σi(t∗, · ) ≤ 0 a.e. on ]xi, xi+1[ for i = 1, . . . , m − 1, σm(t∗, · ) ≤ 0 on ]xm, +∞[ . (4.19)

To establish (4.19) we first focus on i = 1. Note that (4.12) yields wε(t∗, y) ≤ wε(t∗, x1) for every
y ∈ [x1, x2] and by using the inequality V ′ ≤ 0 we conclude that V (wε(t∗, x1)) ≤ V (wε(t∗, y)) for
every y ∈ [x1, x2]. By recalling the inequality η′ ≥ 0 we conclude that σ1(t∗, · ) ≤ 0 on [x1, x2].

We now consider the case i > 1. Assume for a moment that we have established the inequalities
j∑

k=1
(−1)k+1η′

(
xk − y

ε

)
≥ 0 if j = 1, . . . , m, j odd (4.20)

and
j∑

k=1
(−1)k+1η′

(
xk − y

ε

)
≤ 0 if j = 2, . . . , m, j even. (4.21)

By combining (4.20) with (4.12), (4.21) with (4.13) and recalling the inequality V ′ ≤ 0 we get that
the first and (choosing j = i) the second term in (4.18) are nonpositive. Hence, to establish (4.19)
we are left to establish (4.20) and (4.21). We first establish (4.20). If j = 1, then

1∑
k=1

(−1)k+1η′
(

xk − y

ε

)
= η′

(
x1 − y

ε

)
(2.6)
≥ 0. (4.22)

If j ≥ 3 is odd, then we use the equality

j∑
k=1

(−1)k+1η′
(

xk − y

ε

)
= η′

(
x1 − y

ε

)
+

j−1∑
h=2, h even

[
η′

(
xh+1 − y

ε

)
− η′

(
xh − y

ε

)]
for every j = 3, . . . , m, j odd. (4.23)

Since η′ ≥ 0 and η′ is a non-decreasing function, each of the terms in the above sum is non-negative,
which combined with (4.22) establishes (4.20). We now turn to (4.21). We have

j∑
k=1

(−1)k+1η′
(

xk − y

ε

)
=

j−1∑
h=1, h odd

[
η′

(
xh − y

ε

)
− η′

(
xh+1 − y

ε

)]
∀ j = 2, . . . , m, j even.

Owing to the assumption that η′ is a non-decreasing function, each of the terms in the above sum
is non-positive and this establishes (4.21). This concludes the proof of the inequality f ′(t∗) ≤ 0
and hence of (2.11).

4.2. Conclusion of the proof of (2.11)
To complete the proof of (2.11) we are left to remove the assumptions (4.2) and (4.3). We can
use the same approximation argument as in Step 3 of the proof of [14, Theorem 1.1], the only
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difference is that we also have to get the second condition in (4.3). To achieve this, we can define
u0n as the convolution of the compactly supported kernel ρn with

ũ0n :=
{

u0(x) x ≤ n

u+ x ≥ n

In this way (4.3) is verified by u0n for some R depending on n and on the size of the support of ρn.
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