On some coupled PDE-ODE systems in fluid dynamics
Journées équations aux dérivées partielles (2018), Exposé no. 5, 13 p.

In this note we will present some existence and uniqueness issues for three coupled PDE-ODE systems. The common frame is that they arise as the asymptotical dynamics of a regular, incompressible two-dimensional flow interacting with:

  • points at which the vorticity is highly concentrated (point vortices);
  • an obstacle shrinking to a steady point;
  • rigid bodies contracting to moving massive particles.

We will mainly focus on the last situation, corresponding to the article [11], which is a joint work with Christophe Lacave.

Publié le :
DOI : 10.5802/jedp.665

Evelyne Miot 1

1 CNRS-Université Grenoble Alpes Institut Fourier UMR 5582 100, rue des mathématiques 38610 Gières France
@incollection{JEDP_2018____A5_0,
     author = {Evelyne Miot},
     title = {On some coupled {PDE-ODE} systems in fluid dynamics},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:5},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2018},
     doi = {10.5802/jedp.665},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.665/}
}
TY  - JOUR
AU  - Evelyne Miot
TI  - On some coupled PDE-ODE systems in fluid dynamics
JO  - Journées équations aux dérivées partielles
N1  - talk:5
PY  - 2018
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.665/
DO  - 10.5802/jedp.665
LA  - en
ID  - JEDP_2018____A5_0
ER  - 
%0 Journal Article
%A Evelyne Miot
%T On some coupled PDE-ODE systems in fluid dynamics
%J Journées équations aux dérivées partielles
%Z talk:5
%D 2018
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.665/
%R 10.5802/jedp.665
%G en
%F JEDP_2018____A5_0
Evelyne Miot. On some coupled PDE-ODE systems in fluid dynamics. Journées équations aux dérivées partielles (2018), Exposé no. 5, 13 p. doi : 10.5802/jedp.665. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.665/

[1] Luigi Ambrosio Transport equation and Cauchy problem for non-smooth vector fields, Calculus of variations and nonlinear partial differential equations (Lecture Notes in Mathematics), Volume 1927, Springer, 2008, pp. 1-42 | Zbl

[2] Luigi Ambrosio Well posedness of ODE’s and continuity equations with nonsmooth vector fields, and applications (2017) (preprint)

[3] Gianluca Crippa; Camillo De Lellis Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15-46 | Zbl

[4] Gianluca Crippa; Lopes Milton C. Filho; Evelyne Miot; Helena J. Nussenzveig Lopes Flows of vector fields with point singularities and the vortex-wave system, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 5, pp. 2405-2417 | Zbl

[5] Ronald J. DiPerna; Pierre-Louis Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | Zbl

[6] Olivier Glass; Christophe Lacave; Franck Sueur On the motion of a small body immersed in a two dimensional incompressible perfect fluid, Bull. Soc. Math. Fr., Volume 142 (2014) no. 3, pp. 489-536 | Zbl

[7] Olivier Glass; Christophe Lacave; Franck Sueur On the motion of a small light body immersed in a two dimensional incompressible perfect fluid with vorticity, Commun. Math. Phys., Volume 341 (2016) no. 3, pp. 1015-1065 | Zbl

[8] Ernst Hölder Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit, Math. Z., Volume 37 (1993), pp. 727-738 | Zbl

[9] Dragoş Iftimie; Milton C. Lopes Filho; Helena J. Nussenzveig Lopes Two dimensional incompressible ideal flow around a small obstacle, Commun. Partial Differ. Equations, Volume 28 (2003) no. 1-2, pp. 349-379 | Zbl

[10] Christophe Lacave; Evelyne Miot Uniqueness for the vortex-wave system when the vorticity is initially constant near the point vortex, SIAM J. Math. Anal., Volume 41 (2009) no. 3, pp. 1138-1163 | Zbl

[11] Christophe Lacave; Evelyne Miot The vortex-wave system with gyroscopic effects (2019) (https://arxiv.org/abs/1903.01714)

[12] Andrew J. Majda; Andrea L. Bertozzi Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, 2002 | Zbl

[13] Carlo Marchioro On the Euler equations with a singular external velocity field, Rend. Semin. Mat. Univ. Padova, Volume 84 (1990), pp. 61-69 | Zbl

[14] Carlo Marchioro; Mario Pulvirenti On the vortex-wave system, Mechanics, analysis, and geometry: 200 years after Lagrange (North-Holland Delta Series), North-Holland, 1991, pp. 79-95 | Zbl

[15] Carlo Marchioro; Mario Pulvirenti Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, 96, Springer, 1994 | Zbl

[16] Evelyne Miot Quelques problèmes relatifs à la dynamique des points vortex dans les équations d’Euler et de Ginzburg-Landau complexe, Université Pierre et Marie Curie - Paris VI (France) (2009) (Ph. D. Thesis)

[17] Ayman Moussa; Franck Sueur On a Vlasov–Euler system for 2D sprays with gyroscopic effects, Asymptotic Anal., Volume 81 (2013) no. 1, pp. 53-91 | Zbl

[18] Victor N. Starovoǐtov Solvability of the problem of motion of concentrated vortices in an ideal fluid, Din. Splosh. Sredy, Volume 85 (1988), pp. 118-136

[19] Victor N. Starovoǐtov Uniqueness of a solution to the problem of evolution of a point vortex, Sib. Math. J., Volume 35 (1994) no. 3, pp. 625-630 | Zbl

[20] Elias M. Stein Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 | Zbl

[21] Witold Wolibner Un théorème sur l’existence du mouvement plan d’un fluide parfait homogène, incompressible, pendant un temps infiniment long, Math. Z., Volume 37 (1933) no. 1, pp. 698-726 | Zbl

[22] Viktor I. Yudovich Non-stationary flows of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., Volume 3 (1963) no. 6, pp. 1032-1066 English translation in USSR Comput. Math. Math. Phys. 3 (1963), no. 6, p. 1407-1456

Cité par Sources :