This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.
@incollection{JEDP_2003____A9_0,
author = {Fran\c{c}ois Golse},
title = {The mean-field limit for the dynamics of large particle systems},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {9},
pages = {1--47},
publisher = {Universit\'e de Nantes},
year = {2003},
doi = {10.5802/jedp.623},
zbl = {02079444},
mrnumber = {2050595},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.623/}
}
TY - JOUR AU - François Golse TI - The mean-field limit for the dynamics of large particle systems JO - Journées équations aux dérivées partielles PY - 2003 SP - 1 EP - 47 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.623/ DO - 10.5802/jedp.623 LA - en ID - JEDP_2003____A9_0 ER -
%0 Journal Article %A François Golse %T The mean-field limit for the dynamics of large particle systems %J Journées équations aux dérivées partielles %D 2003 %P 1-47 %I Université de Nantes %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.623/ %R 10.5802/jedp.623 %G en %F JEDP_2003____A9_0
François Golse. The mean-field limit for the dynamics of large particle systems. Journées équations aux dérivées partielles (2003), article no. 9, 47 p.. doi: 10.5802/jedp.623
[25] , , , , Towards a rigorous derivation of the cubic nonlinear Schrödinger equation in dimension 1, preprint.
[26] , , , , Derivation of the Schrödinger-Poisson equation from the quantum N-body problem, C. R. Acad. Sci. Sér. I Math 334 (2002), 515-520. | Zbl | MR
[27] , , , , Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, to appear in J. de Math. Pures et Appl. 82 (2003). | Zbl | MR
[28] , , , , Derivation of the Time-Dependent Hartree-Fock Equation with Coulomb Potential, in preparation.
[30] , , , Weak coupling limit of the N-particle Schrödinger equation, Methods Appl. Anal. 7 (2000), no. 2, 275-293. | Zbl | MR
[31] , , , An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction, Commun. Math. Phys. 37 (1974), 183-191. | Zbl | MR
[32] , , , On the Hartree-Fock time-dependent problem, Comm. Math. Phys. 49 (1976), 25-33. | MR
[33] , , The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles; Commun. Math. Phys. 56 (1977), 101-113. | Zbl | MR
[34] , , , : A special class of flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys. 143 (1992), 501-525. | Zbl | MR
[35] , , On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci. 9 (1999), 963-990. | Zbl | MR
[36] , , , The mathematical theory of thermodynamic limits: Thomas-Fermi type models, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, (1998). | Zbl | MR
[37] , , Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Mathematical Phys. 16 (1975), 1122-1130. | Zbl | MR
[38] , , On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation; preprint. | MR | Zbl
[39] , Vlasov equations; Funct. Anal. Appl. 13 (1979), 115-123. | Zbl | MR
[40] , : Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5 (2001), 1169-1205. | Zbl | MR
[41] , Rigorous theory of the Boltzmann equation in the Lorentz gas, Nota int. no. 358, Istituto di Fisica, Università di Roma, (1972). Reprinted in Statistical Mechanics: a Short Treatise, pp. 48-55, Springer-Verlag Berlin-Heidelberg (1999)
[42] , Statistical mechanics of classical particles with logarithmic interactions; Commun. Pure Appl. Math. 46 (1993), 27-56. | Zbl | MR
[43] , PhD Thesis, U. of California, Berkeley 1975.
[44] , : Mécanique quantique; Editions Mir, Moscou 1967.
[45] , : Théorie quantique relativiste, première partie; Editions Mir, Moscou 1972. | MR
[46] , : Physique statistique, deuxième partie; Editions Mir, Moscou 1990.
[47] : Time evolution of large classical systems, in ``Dynamical systems, theory and applications" (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 1-111. Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975. | Zbl | MR
[48] , Mathematical Theory of Incompressible Nonviscous Fluids, Springer-Verlag (1994). | Zbl | MR
[50] : Equations of the self-consistent field; J. Soviet Math. 11 (1979), 123-195. | Zbl | MR
[51] , , Vlasov hydrodynamics of a quantum mechanical model, Comm. Math. Phys. 79 (1981), 9-24. | MR
[52] The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles; Trans. Fluid Dynamics 18 (1977), 663-678.
[52] An abstract form of the nonlinear Cauchy-Kowalewski theorem; J. Differential Geometry 6 (1972), 561-576. | Zbl | MR
[53] Statistical hydrodynamics, Supplemento al Nuovo Cimento 6 (1949), 279-287. | MR
[54] A note on a theorem of Nirenberg; J. Differential Geometry 12 (1977), 629-633. | Zbl | MR
[55] , Kinetic Equations from Hamiltonian Dynamics: Markovian Limits, Rev. Modern Phys. 52 (1980), 569-615. | MR | Zbl
Cité par Sources :

