Kato’s conjecture, stating that the domain of the square root of any accretive operator with bounded measurable coefficients in is the Sobolev space , i.e. the domain of the underlying sesquilinear form, has recently been obtained by Auscher, Hofmann, Lacey, McIntosh and the author. These notes present the result and explain the strategy of proof.
@incollection{JEDP_2001____A14_0, author = {Philippe Tchamitchian}, title = {The solution of {Kato's} conjecture (after {Auscher,} {Hofmann,} {Lacey,} {McIntosh} and {Tchamitchian)}}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {14}, pages = {1--14}, publisher = {Universit\'e de Nantes}, year = {2001}, doi = {10.5802/jedp.598}, zbl = {01808690}, mrnumber = {1843415}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.598/} }
TY - JOUR AU - Philippe Tchamitchian TI - The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian) JO - Journées équations aux dérivées partielles PY - 2001 SP - 1 EP - 14 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.598/ DO - 10.5802/jedp.598 LA - en ID - JEDP_2001____A14_0 ER -
%0 Journal Article %A Philippe Tchamitchian %T The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian) %J Journées équations aux dérivées partielles %D 2001 %P 1-14 %I Université de Nantes %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.598/ %R 10.5802/jedp.598 %G en %F JEDP_2001____A14_0
Philippe Tchamitchian. The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian). Journées équations aux dérivées partielles (2001), article no. 14, 14 p. doi : 10.5802/jedp.598. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.598/
[ACT] Auscher, P., Coulhon, T., Tchamitchian, P. Absence de principe du maximum pour certaines équations paraboliques complexes, Coll. Math., 171 1996, 87-95. | MR | Zbl
[AHLT] Auscher, P., Hofmann, S., Lewis, J., Tchamitchian, P. Extrapolation of Carleson measures and the analyticity of Kato's square root operator, Acta Math., to appear. | MR | Zbl
[AHLMT] Auscher, P., Hofmann, S., Lacey, M., Mcintosh, A., Tchamitchian, P. The solution of the Kato square root problem for second order elliptic operators on , submitted.
[AHLLMT] Auscher, P., Hofmann, S., Lacey, M., Lewis, J., Mcintosh, A., Tchamitchian, P. La solution des conjectures de Kato, C. R. Acad. Sci. Paris, 327, Série I (2001). | MR
[AMT] Auscher, P., Mcintosh, A., Tchamitchian, P. Heat kernel of complex elliptic operators and applications, J. Funct. Anal., 152 1998, 22-73. | MR | Zbl
[AT95] Auscher, P., Tchamitchian, P. Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux), Ann. Inst. Fourier, 45 1995, 721-778. | Numdam | MR | Zbl
[AT] Auscher, P., Tchamitchian, P. Square root problem for divergence operators and related topics, Astérisque 249, Société Mathématique de France, 1998. | MR | Zbl
[C] Calderón, A. P. Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 1965, 1092-1099. | MR | Zbl
[CDM] Coifman, R., Deng, D., Meyer, Y. Domaine de la racine carrée de certains opérateurs différentiels accrétifs, Ann. Inst. Fourier 33 1983, 123-134. | Numdam | MR | Zbl
[CJ] Christ, M., Journé, J.-L. Polynomial growth estimates for multilinear singular integral operators, Acta Math. 159 1987, 51-80. | MR | Zbl
[CMM] Coifman, R., Mcintosh, A., Meyer, Y. L’intégrale de Cauchy définit un opérateur borné sur pour les courbes lipschitziennes, Ann. Math. 116 1982, 361-387. | MR | Zbl
[FJK] Fabes, E., Jerison, D., Kenig, C. Multilinear square functions and partial differential equations, Amer. J. of Math. 107 1985, 1325-1367. | MR | Zbl
[J] Journé, J.-L. Remarks on the square root problem, Pub. Math. 35 1991, 299-321. | MR | Zbl
[K] Kato, T. Fractional powers of dissipative operators, J. Math. Soc. Japan 13 1961, 246-274. | MR | Zbl
[KM] Kenig, C., Meyer, Y. The Cauchy integral on Lipschitz curves and the square root of second order accretive operators are the same, Recent Progress in Fourier Analysis (I. Peral, ed.), Math. Studies 111, North Holland, 1985, 123-145. | MR | Zbl
[M72] Mcintosh, A. On the Comparability of and , Proc. Amer. Math. Soc. 32 1972, 430-434. | MR | Zbl
[M82] Mcintosh, A. On representing closed accretive sesquilinear forms as , Collège de France Seminar, Volume III (H. Brezis and J.-L. Lions, eds.), Research Notes in Mathematics 70, Pitman, 1982, 252-267. | MR | Zbl
[M83] Mcintosh, A. Square roots of operators and applications to hyperbolic , Miniconference on Operator Theory and Partial Differential Equations (Canberra), Center for Math. and Appl., The Australian National University, 1983. | MR | Zbl
[M85] Mcintosh, A. Square roots of elliptic operators, J. Funct. Anal. 61 1985,307-327. | MR | Zbl
[M86] Mcintosh, A. Operators which have an functional calculus, Miniconference on Operator Theory and Partial Differential Equations (Canberra), Center for Math. and Appl., The Australian National University, 1986. | MR | Zbl
[S] Semmes, S. Square function estimates and the Theorem, Proc. Amer. Math. Soc. 110 1990, 3, 721-726. | MR | Zbl
[Y] Yagi, A. Coïncidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs, C. R. Acad. Sci. Paris 299, Série I 1984, 173-176. | MR | Zbl
Cited by Sources: