We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation , where is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes bounds on the curvature tensor of is a major step towards the proof of the bounded curvature conjecture.
@incollection{JEDP_2008____A9_0, author = {Sergiu Klainerman and Igor Rodnianski and Jeremie Szeftel}, title = {Around the bounded $L^2$ curvature conjecture in general relativity}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {9}, pages = {1--15}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2008}, doi = {10.5802/jedp.53}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.53/} }
TY - JOUR AU - Sergiu Klainerman AU - Igor Rodnianski AU - Jeremie Szeftel TI - Around the bounded $L^2$ curvature conjecture in general relativity JO - Journées équations aux dérivées partielles PY - 2008 SP - 1 EP - 15 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.53/ DO - 10.5802/jedp.53 LA - en ID - JEDP_2008____A9_0 ER -
%0 Journal Article %A Sergiu Klainerman %A Igor Rodnianski %A Jeremie Szeftel %T Around the bounded $L^2$ curvature conjecture in general relativity %J Journées équations aux dérivées partielles %D 2008 %P 1-15 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.53/ %R 10.5802/jedp.53 %G en %F JEDP_2008____A9_0
Sergiu Klainerman; Igor Rodnianski; Jeremie Szeftel. Around the bounded $L^2$ curvature conjecture in general relativity. Journées équations aux dérivées partielles (2008), article no. 9, 15 p. doi : 10.5802/jedp.53. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.53/
[1] Hajer Bahouri; Jean-Yves Chemin Équations d’ondes quasilinéaires et effet dispersif, Internat. Math. Res. Notices (1999) no. 21, pp. 1141-1178 | MR | Zbl
[2] Hajer Bahouri; Jean-Yves Chemin Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math., Volume 121 (1999) no. 6, pp. 1337-1377 | MR | Zbl
[3] Robert Bartnik Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys., Volume 94 (1984) no. 2, pp. 155-175 | MR | Zbl
[4] Demetrios Christodoulou; Sergiu Klainerman The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, 41, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl
[5] Y. Fourès-Bruhat Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | MR | Zbl
[6] Thomas J. R. Hughes; Tosio Kato; Jerrold E. Marsden Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal., Volume 63 (1976) no. 3, p. 273-294 (1977) | MR | Zbl
[7] S. Klainerman; M. Machedon Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., Volume 46 (1993) no. 9, pp. 1221-1268 | MR | Zbl
[8] S. Klainerman; M. Machedon Estimates for null forms and the spaces , Internat. Math. Res. Notices (1996) no. 17, pp. 853-865 | MR | Zbl
[9] S. Klainerman; I. Rodnianski Improved local well-posedness for quasilinear wave equations in dimension three, Duke Math. J., Volume 117 (2003) no. 1, pp. 1-124 | MR | Zbl
[10] S. Klainerman; I. Rodnianski A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal., Volume 16 (2006) no. 1, pp. 126-163 | MR
[11] S. Klainerman; I. Rodnianski Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal., Volume 16 (2006) no. 1, pp. 164-229 | MR
[12] Sergiu Klainerman PDE as a unified subject, Geom. Funct. Anal. (2000) no. Special Volume, Part I, pp. 279-315 GAFA 2000 (Tel Aviv, 1999) | MR | Zbl
[13] Sergiu Klainerman; Igor Rodnianski Ricci defects of microlocalized Einstein metrics, J. Hyperbolic Differ. Equ., Volume 1 (2004) no. 1, pp. 85-113 | MR | Zbl
[14] Sergiu Klainerman; Igor Rodnianski Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ., Volume 2 (2005) no. 2, pp. 279-291 | MR
[15] Sergiu Klainerman; Igor Rodnianski Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math., Volume 159 (2005) no. 3, pp. 437-529 | MR | Zbl
[16] Sergiu Klainerman; Igor Rodnianski The causal structure of microlocalized rough Einstein metrics, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1195-1243 | MR | Zbl
[17] Sergiu Klainerman; Igor Rodnianski Rough solutions of the Einstein-vacuum equations, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1143-1193 | MR | Zbl
[18] Hans Lindblad Counterexamples to local existence for semi-linear wave equations, Amer. J. Math., Volume 118 (1996) no. 1, pp. 1-16 | MR | Zbl
[19] Gustavo Ponce; Thomas C. Sideris Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations, Volume 18 (1993) no. 1-2, pp. 169-177 | MR | Zbl
[20] Hart F. Smith A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835 | Numdam | MR | Zbl
[21] Hart F. Smith; Christopher D. Sogge On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett., Volume 1 (1994) no. 6, pp. 729-737 | MR | Zbl
[22] Hart F. Smith; Daniel Tataru Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. (2), Volume 162 (2005) no. 1, pp. 291-366 | MR | Zbl
[23] Elias M. Stein Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993 (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR | Zbl
[24] Daniel Tataru Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math., Volume 122 (2000) no. 2, pp. 349-376 | MR | Zbl
[25] Daniel Tataru Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 419-442 (electronic) | MR | Zbl
Cited by Sources: