Mersenne banner

Books, Proceedings and Seminars of Centre Mersenne

  • Books
  • Seminars
  • Conferences
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Journées équations aux dérivées partielles
  • Year 2014
  • article no. 1
  • Next
Uniform Lipschitz estimates in stochastic homogenization
Scott Armstrong1
1 Ceremade (UMR CNRS 7534) Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France
Journées équations aux dérivées partielles (2014), article no. 1, 11 p.
  • Abstract

We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining L ∞ -type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.

  • Article information
  • Export
  • How to cite
EuDML
DOI: 10.5802/jedp.104
Classification: 35B27, 60H25, 35J20, 35J62
Keywords: Stochastic homogenization, Lipschitz regularity, error estimate
Author's affiliations:
Scott Armstrong 1

1 Ceremade (UMR CNRS 7534) Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France
  • BibTeX
  • RIS
  • EndNote
@incollection{JEDP_2014____A1_0,
     author = {Scott Armstrong},
     title = {Uniform {Lipschitz} estimates in stochastic homogenization},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {1},
     pages = {1--11},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2014},
     doi = {10.5802/jedp.104},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.104/}
}
TY  - JOUR
AU  - Scott Armstrong
TI  - Uniform Lipschitz estimates in stochastic homogenization
JO  - Journées équations aux dérivées partielles
PY  - 2014
SP  - 1
EP  - 11
PB  - Groupement de recherche 2434 du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.104/
DO  - 10.5802/jedp.104
LA  - en
ID  - JEDP_2014____A1_0
ER  - 
%0 Journal Article
%A Scott Armstrong
%T Uniform Lipschitz estimates in stochastic homogenization
%J Journées équations aux dérivées partielles
%D 2014
%P 1-11
%I Groupement de recherche 2434 du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.104/
%R 10.5802/jedp.104
%G en
%F JEDP_2014____A1_0
Scott Armstrong. Uniform Lipschitz estimates in stochastic homogenization. Journées équations aux dérivées partielles (2014), article  no. 1, 11 p. doi : 10.5802/jedp.104. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.104/
  • References
  • Cited by

[1] S. N. Armstrong; J.-C. Mourrat Lipschitz regularity for elliptic equations with random coefficients (Preprint)

[2] S. N. Armstrong; Z. Shen Lipschitz estimates in almost-periodic homogenization (Preprint, arXiv:1409.2094)

[3] S. N. Armstrong; C. K. Smart Quantitative stochastic homogenization of convex integral functionals (Preprint, arXiv:1406.0996)

[4] M. Avellaneda; F.-H. Lin Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., Volume 40 (1987) no. 6, pp. 803-847 | DOI | MR | Zbl

[5] M. Avellaneda; F.-H. Lin L p bounds on singular integrals in homogenization, Comm. Pure Appl. Math., Volume 44 (1991) no. 8-9, pp. 897-910 | DOI | MR | Zbl

[6] G. Dal Maso; L. Modica Nonlinear stochastic homogenization, Ann. Mat. Pura Appl. (4), Volume 144 (1986), pp. 347-389 | DOI | MR | Zbl

[7] G. Dal Maso; L. Modica Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math., Volume 368 (1986), pp. 28-42 | MR | Zbl

[8] A. Gloria; S. Neukamm; F. Otto A regularity theory for random elliptic operators, Preprint, arXiv:1409.2678

[9] A. Gloria; F. Otto An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., Volume 39 (2011) no. 3, pp. 779-856 | DOI | MR | Zbl

[10] A. Gloria; F. Otto An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab., Volume 22 (2012) no. 1, pp. 1-28 | DOI | MR

[11] A. Gloria; F. Otto Quantitative results on the corrector equation in stochastic homogenization, Preprint

[12] S. M. Kozlov The averaging of random operators, Mat. Sb. (N.S.), Volume 109(151) (1979) no. 2, p. 188-202, 327 | MR | Zbl

[13] A Naddaf; T. Spencer Estimates on the variance of some homogenization problems, 1998, Unpublished preprint

[14] G. C. Papanicolaou; S. R. S. Varadhan Boundary value problems with rapidly oscillating random coefficients, Random fields, Vol. I, II (Esztergom, 1979) (Colloq. Math. Soc. János Bolyai), Volume 27, North-Holland, Amsterdam, 1981, pp. 835-873 | MR | Zbl

[15] V. V. Yurinskiĭ Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh., Volume 27 (1986) no. 4, p. 167-180, 215 | MR | Zbl

[16] V. V. Yurinskiĭ Homogenization error estimates for random elliptic operators, Mathematics of random media (Blacksburg, VA, 1989) (Lectures in Appl. Math.), Volume 27, Amer. Math. Soc., Providence, RI, 1991, pp. 285-291 | MR | Zbl

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us