For the dynamics , an equilibrium point are always unstable when on a neighborhood of the non constant satisfies for a real second order elliptic . The proof uses a result of Kozlov [6].
@article{SLSEDP_2013-2014____A12_0, author = {Jeffrey Rauch}, title = {Earnshaw{\textquoteright}s {Theorem} in {Electrostatics} and a {Conditional} {Converse} to {Dirichlet{\textquoteright}s} {Theorem}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:12}, pages = {1--10}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2013-2014}, doi = {10.5802/slsedp.56}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.56/} }
TY - JOUR AU - Jeffrey Rauch TI - Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:12 PY - 2013-2014 SP - 1 EP - 10 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.56/ DO - 10.5802/slsedp.56 LA - en ID - SLSEDP_2013-2014____A12_0 ER -
%0 Journal Article %A Jeffrey Rauch %T Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem %J Séminaire Laurent Schwartz — EDP et applications %Z talk:12 %D 2013-2014 %P 1-10 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.56/ %R 10.5802/slsedp.56 %G en %F SLSEDP_2013-2014____A12_0
Jeffrey Rauch. Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem. Séminaire Laurent Schwartz — EDP et applications (2013-2014), Exposé no. 12, 10 p. doi : 10.5802/slsedp.56. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.56/
[1] G. Allaire and J. Rauch, In preparation.
[2] V. Arnold, Mathematical developments arising from Hilbert problems, Proceedings of Symposia in Pure Mathematics (F. Browder, Ed.), Amer. Math. Soc., Providence, R.I., 1976. | MR
[3] S. Earnshaw, On the nature of the molecular forces which regulate the constitution of the luminferous ether, Trans. Cambridge Phil. Soc. 7, (1842) 97-112.
[4] P. Hagedorn, Die umkehrung der stabilitätssätze von Lagrange-Dirichlet und Routh, Arch. Rational Mech. Anal. 42 (1971) 281-316. | MR | Zbl
[5] V. Kozlov, Asymptotic solutions of equations of classical mechanics, J. Appl. Math. Mech. 46 (1982) 454-457. | MR | Zbl
[6] V. Kozlov, Asymptotic motions and the inversion of the Lagrange-Dirichlet theorem, J. Appl. Math. Mech. 50 (1987) 719-725. | MR | Zbl
[7] M. Laloy and K. Peiffer, On the instability of equilibrium when the potential has a non-strict local minimum, Arch. Rational Mech. Anal. 78 (1982) 213-222. | MR | Zbl
[8] J. C. Maxwell, A Treatise on Electricity and Magnetism Vol. I., (From the 1891 ed.) Dover Publ. 1954. | MR | Zbl
[9] P. Negrini, On the inversion of the Lagrange-Dirichlet Theorem, Resenhas 2 (1995), no. 1, 83-114. | MR | Zbl
[10] S. Taliaferro, Stability for two dimensional analytic potentials, J. Differential Equations 35 (1980) 248-265. | MR | Zbl
[11] S. Taliaferro, Instability of an equilibrium in a potential field. Arch. Rational Mech. Anal. 109 no.2 (1990) 183-194. | MR | Zbl
Cité par Sources :