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Nantes, 5-9 juin 2000
GDR 1151 (CNRS)

Application of linear hyperbolic PDE to linear
quantum fields in curved spacetimes: especially
black holes^ time machines and a new semi-local

vacuum concept

Bernard S. KAY

Abstract
Several situations of physical importance may be modelled by linear quan-

tum fields propagating in fixed spacetime-dependent classical background
fields. For example, the quantum Dirac field in a strong and/or time de-
pendent external electromagnetic field accounts for the creation of electron-
positron pairs out of the vacuum. Also, the theory of linear quantum fields
propagating on a given background curved spacetime is the appropriate frame-
work for the derivation of black-hole evaporation (Hawking effect) and for
studying the question whether or not it is possible in principle to manufac-
ture a time-machine. It is a well-established metatheorem that any question
concerning such a linear quantum field may be reduced to a definite ques-
tion concerning the corresponding classical field theory (i.e. linear hyperbolic
PDE with non-constant coefficients describing the background in question) -
albeit not necessarily a question which would have arisen naturally in a purely
classical context. The focus in this talk will be on the covariant Klein-Gordon
equation in a fixed curved background, although we shall draw on analogies
with other background field problems and with the time-dependent harmonic
oscillator. The aim is to give a sketch-impression of the whole subject of
Quantum Field Theory in Curved Spacetime, focussing on work with which
the author has been personally involved, and also to mention some ideas and
work-in-progress by the author and collaborators towards a new "semi-local"
vacuum construction for this subject. A further aim is to introduce, and set
into context, some recent advances in our understanding of the general struc-
ture of quantum fields in curved spacetimes which rely on classical results
from microlocal analysis.

MSC 2000 : 35A18, 35A27, 35Q40, 81T20
Keywords : quantum, field, Klein-Gordon, space-time, microlocal
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1. Introduction
The subject of Quantum Field Theory in Curved Spacetime has long attracted

the interest both of some theoretical physicists and of some workers in the theory
of partial differential equations.

To explain what this subject is about, let us start, for example, with the rela-
tivistic wave equation (Klein-Gordon equation)

( Q2 Q2 92 92 2\
\9t2 ^ " Q y 2 ' ^ ' ^ 1 7 1 ) ^ - 0

appropriate to the description of a free scalar quantum "particle" of mass m in
the flat four-dimensional spacetime of special relativity. Equivalently, in a more
compact notation, one writes

(D + m2)^ = 0 (KGO)

where D stands for rj^QaQb, and rj = diag(l, -1, -1, -1) is the usual Minkowskian
metric on R4. (Above, we have adopted the convention that the speed of light c is
equal to 1.)

Bearing in mind that, when we pass from Special to General Relativity, the
flat spacetime of Minkowski gets replaced by a curved spacetime (-M,^) - M.
a four-dimensional manifold, g a general pseudo-Riemannian metric of signature
(+, —, —, —) - it is natural to generalize (1) to the covariant Klein-Gordon equation

(D^ + m2)^ = 0 (KG)

where D^ now denotes the natural covariant generalization of D to this curved
spacetime, i.e. the Laplace-Beltrami operator associated with the metric g:

,ab\a, = rVaV,

= Idet^l-^^.ddet^l4-1/2^^)

= g^QaQb + lower order terms.

(Above, g with indices upstairs denotes the inverse matrix to g with indices down-
stairs) .

KGO is, of course, the prototype equation for quantum field theory in flat space-
time. It, and its higher-spin counterparts, when coupled together with suitable (non-
linear) interaction terms and when understood, not as classical PDEs but rather in
an appropriate quantum-theoretic sense, is believed to describe the behaviour of
elementary particles to the extent that the effects of gravity may be ignored. In
much the same way, KG, for a given fixed background spacetime (A^,^), and when
interpreted in a suitable quantum sense - it will be one of our purposes, below, to as-
sign a definite mathematical meaning to the resulting "quantized KG" - is believed
to be a prototype equation for the effect of a given strong external gravitational
field on elementary particles propagating in its vicinity. If one^s principle interest is
in the new features of quantum field theory due to the presence of a strong exter-
nal gravitational field, it presumably suffices to study this simple linear model. Of
course, to study such a theory is a far less ambitious thing to do than to attempt to
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formulate a full theory of quantum gravity. In a full theory of quantum gravity, not
only would there be interactions between the various matter (i.e. non-gravity) fields
but also the gravitational field would itself be dynamical and presumably require a
quantum description. But one believes that a theory such as quantized KG should
have an interesting domain of validity as an approximate theory, and hopes that by
studying it in its domain of validity one might even find some clues as to the nature
of quantum gravity itself.

During the last 30 or so years, the resulting subject of Quantum Field Theory
in Curved Spacetime and in particular, quantized KG, has turned out to be more
rich and interesting than one might have expected. Before turning to the question
just what is meant, mathematically, by "quantized KG" let us mention some of the
physical predictions resulting from its study. (Note that, of course, physicists did
not wait for the mathematical definition of the theory to be completely clear before
starting to make their calculations!)

• The Hawking Effect: It is the framework within which Hawking made his
spectacular 1974 prediction [1] that mini black holes will not in fact be black
but rather hot with a temperature, given in the case of a spherically symmetric
black hole of mass M (and using units where c = G = = / ; = f t = = l ) , b y the
formula ̂ H^^g == I/STTM.

• The Time-Machine Question: It also leads to interesting results which sug-
gest that time-travel-to-the-past scenarios, which, worryingly, are seemingly
permitted by classical general relativity, are prevented from actually occurring
by quantum effects.

At a conceptual level, the attempt to formulate the general theory has raised
some important matters of principle, the resolution of which has arguably led to
a deeper understanding of quantum field theory in general, even if one is mainly
interested in the Minkowski space case. These matters of principle are connected
with the following, somewhat paradoxical-seeming circumstance. On the one hand:

• Particle Creation: The principal physical phenomenon associated with quan-
tum field theory in curved spacetime is the creation of pairs of particles out
of the vacuum.

Yet, on the other hand,

• The Problematic Nature of "Particles": In a general curved spacetime context,
the very notion of "particle", becomes vague and ambiguous. Correspondingly,
the familiar Minkowski-space notion of a single preferred "vacuum" state has
to be abandoned and replaced instead with a preferred family of physically
permissible states, amongst which a principle of democracy prevails.

A suitable conceptual-mathematical framework which reflects this state of affairs
is now fairly well developed (although there are still also some important gaps as
I'll discuss at the end of the talk in Section 6). The key idea is to have a notion
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for the field itself which does not rely on any particular concept of "particles" or
"vacuum", and to regard this abstract notion of "field" as the fundamental entity.
This is achieved by adopting the so called algebraic approach to quantum field theory
(see [2] and Chapter 3 in [3]) which involves the theory of *-algebras and their states
and Hilbert-space representations. However, as long as one is concerned with a pro-
totype equation which is linear such as (2), the questions which arise concerning
the quantum theory ultimately reduce to questions about the underlying classical
partial differential equation; the role of the *-algebras etc. being to establish a dic-
tionary telling us which classical question corresponds to which quantum question.
It seems justified, in fact, to say that there is a:

• Metatheorem: Any question concerning the quantum field theory based on
KG may be translated into a definite question concerning KG - regarded as
a classical PDE (hyperbolic, and with non-constant coefficients) - albeit not
necessarily a question which would have arisen naturally in a purely classical
context.

Some of the questions which arise in this way have posed interesting challenges
and have led to the import into the subject of a wide variety of techniques from
the theory of linear PDE. Especially, the Princeton 1992 PhD thesis of Marek
Radzikowski [4, 35, 36] (see Section 3 below) opened the way to solving some pre-
viously unsolved problems in the theory with help of techniques and results from
microlocal analysis [5, 6, 7]. This sparked off a revolution in the subject which is still
at a very active stage. See e.g. the recent papers of Fredenhagen, Koehler, Brunetti,
Verch, Junker, Sahlmann and Fewster [8, 9, 10, 11, 12, 13, 14]). Radzikowski's work
may be seen as having picked up where Duistermaat and Hormander left off in 1972
when they discussed distinguished parametrices and the Feynman Propagator [6] for
KG and it should be mentioned that Arthur Wightman played an important role
in influencing both the earlier (cf. the last paragraph in the preface to [6]) and (as
Radzikowski's PhD supervisor) the later work and in keeping the flame alive during
the intervening twenty years.

The aim of the remainder of my talk will be to amplify on some of the main
physical ideas and results just mentioned and to state some mathematical results
related to them. In particular, I shall aim to provide some helpful physical back-
ground for workers in PDE wishing to delve into the recent literature which applies
microlocal analysis.1 I should emphasize that, aside from restricting my attention
to the simple model equation, KG, I shall also mainly limit my discussion to work
with which I have been personally involved. Nevertheless, I hope that what I have
to say will provide a useful entree not only to this work but also to other recent
work including, in addition to the papers using microlocal analysis mentioned above,
the recent mathematical work by several authors on the Hawking effect (see papers
cited in Section 4) as well as the recent papers on spin-j fields (which make use
of Dencker's work [17] on polarisation sets} by Kratzert [18] and by Hollands [19],
and also the papers on quantum (and the, related, classical) scattering theory bv

lFor further general background reading on quantum field theory in curved spacetime, see the
textbooks [15, 16]. Especially [16] is close in spirit to the present account.
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Bachelot, Nicolas and Melnyk [20, 22, 23] for spin-j fields and by Bachelot [21] for
spin-1 fields on black holes.

Another purpose of this talk will be to set into context, and give a brief account
of, some recent work by myself and collaborators towards a new "semi-local vacuum"
concept.

In order to talk about so many things in such a short time, I shall make liberal
use of short-cuts, simple examples, and analogies.

2. Particle production: the harmonic oscillator analogy
In many respects, the quantum theory of our Klein-Gordon equation, KG, in an

external gravitational field is analogous to the Klein-Gordon - or Dirac - equation
in an external electromagnetic field. In the latter case, if the electromagnetic field
is sufficiently rapidly varying in time, it can cause the creation of electron-positron
pairs out of the vacuum.

We wish to explain how this pair creation comes about by referring to an even
simpler analogy: the quantum harmonic oscillator with a time-dependent frequency
term. As is familiar to everyone who has taken an elementary course on Quantum
Mechanics, this may be described by the time-dependent Hamiltonian:

H(t) = \f + ̂ (t)x2

Here x is to be thought of as analogous, in our electron-positron example, to
the field strength of the quantized Dirac field, and, in the analogy with KG, to the
cf) field when it is suitably "quantized"; p is the quantum conjugate variable to A,
satisfying (we shall take h to equal 1) [ x ^ p ] == z; and the term ^(t) is analogous,
in our electron-positron example, to the field strength of the (classical) background
electromagnetic field, and in the analogy with KG, to the, generically, non-constant
coefficients in KG when it is written out in some coordinate system.

Suppose, for example, that ^(t) takes some constant value ^ before some
"initial^ time Ti, returns to that same constant value after some ^finaF time T^^
and varies smoothly in between.
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Adopting the Schrodinger representation
r\

x ^ x , p^-i—
ox

H(t) maps to the differential operator

1 92 1 2, , ,
-2^+2a ;^

(on a suitable domain in L^(R3)).
The eigenfunctions of the constant H for the times earlier than Ti or later than

T2 are the usual harmonic oscillator wave functions: -ipo(x) = Coexp(-uox2/2), ̂  =
c^H^x) exp(-^o^/2), ^2 = c^H^x} exp(-^o^/2), . . . where Co, Ci, c^ . . . are
normalization constants and Ho, H ^ , H ^ , . . . the usual Hermite polynomials. For the
purposes of our analogy, these should be thought of as "vacuum state", "one-particle
state", "two-particle state", etc.

To understand the pair-creation phenomenon in the context of this simple model
let us take the initial vacuum state '0o and evolve it according to the Schrodinger
picture time-evolution for the time-dependent Hamiltonian H{t) between times Ti
and Ts. In other words, let us consider the solution to the differential equation
(Schrodinger equation)

^-l^+L2(^2^(^)-z9^(^
, 2 9 x 2 ' 2 { ) ) ^ • { t ' x ) ~ ^ ~ 9 ^ ~

subject to the boundary condition ^(T^,x) = ipo{x).
By symmetry, the solution, ^(T^ x), to this problem will be an even function of

x, and by completeness of the harmonic oscillator wavefunctions, it will thus have
an expansion:

^(Ts, x) = ao^o(x) + a^{x) + a^{x) + ...

(with ao|2 + |a2 2 + |a4|2 + . . . = 1). In general, f(T^ x) will not itself be a multiple
of ^o{x). In fact, as one may easily show, it will be a so-called squeezed state - i.e. a
Gaussian ^(T^,x) = c^ exp^o^2^) with a constant, a, in the exponent which, in
general will differ from UJQ. Thus the coefficients a^ a^ . . . will not vanish. They are
to be interpreted as quantum amplitudes for the creation of one, two, . . . particle
pairs.

Thus we have fulfilled our promise of explaining how the phenomenon of pair
creation comes about. But, staying with this simple analogy, we can also get some
insight into the sense (cf. Section 1) in which the concept of "particle" is vague and
ambiguous: Consider the following sequence of possible modifications to the problem
just discussed: First, instead of the previous cc;2^), consider an ^(t) which takes
on different constant values, say c^ before Ti and a;̂  after T^ and ask oneself
the question: "With respect to which basis of harmonic oscillator wave functions
should we now expand ^(T^x)7 Those where we substitute ̂  by u)^ or those
where we substitute 0:0 by ̂ ^ ?" Next, return to the original ^{t) but ask oneself
how one could give a particle interpretation to ^(T, x) at a time T lying between t^
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and ^2- Finally, imagine an ^(t) which never settles down to any constant value,
either at early or late times! As one considers these situations in turn, it gets less
and less clear how, and finally impossible, to assign to any given state a definite
particle-interpretation.

3. The field ^-algebra and its states
As we mentioned in the introduction, in view of the vagueness and ambiguity

of the particle concept, one wants to have a mathematical formulation which is not
dependent on it. This is achieved by adopting the so-called algebraic approach to
quantum field theory (see [2] and Chapter 3 in [3]). To explain how this works, we
shall first say what it amounts to for the familiar example of the time-dependent
harmonic oscillator just discussed:

First, one constructs the field *-algebra (with identity J) satisfied by the (Her-
mitian) Heisenberg picture x(t)^ at different times. This is determined once one
specifies the commutator

[£(<i),A(t2)] = x(t,)x{t^) - x(t^)x(tz)

and one finds (e.g. one could show this with the elementary quantum mechanical
formalism discussed above)

[x(t^,x(t^\=z^(t^}I

where A is the difference of the classical advanced and retarded Green functions
for the classical harmonic oscillator equation - i.e. the unique bisolution (i.e.
(d2/^ +^ 2 ( f l ) )A(< t l ,<2) = 0 = (ri2/^! + ^(^A^i,^)) to the classical har-
monic oscillator equation which is antisymmetric (A(<i,<2) = —A(<2^i)) and satis-
fies 9A(<i, t^)/9t^ \t^=ti == 1- [This is the first manifestation of our metatheorem.]

Example: If ̂ (t) == ̂ (= constant), then

sino;o(<i -^2)
A(ti , t2)

UJQ

Our various Gaussian states (now thought of as Heisenberg states, unchanging
in time) are now characterized by their symmetrized two-point functions

Ga(t^} = (c^exp^-ax2/^^)^) + x{t^x{t^exp{-ax2/2)}

which are to be thought of as constituting a democratic family; all values of a being
on an equal footing. Again in accordance with our metatheorem, this is a family of
mathematical objects which may be thought of as referring to the classical theory,
i.e. it consists of symmetric bisolutions to the classical time-dependent harmonic
oscillator equation which satisfy an additional positivity requirement (cf. Condition
(c) below) - a set of objects related to the classical differential equation, this time
not one which would have arisen naturally in a purely classical context.
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Example: If ̂ (t} == o^(= constant) and also a = CL;O, then

cos 0:0 (^i - ̂ )
G^o^i?^) =

(JQ

All these mathematical structures generalize to our equation, KG, provided we
restrict our interest to the class of globally hyperbolic [24] spacetimes. We recall,
[25, 26, 27] that these consist of time-orientable spacetimes which contain a Cauchy
surface, and we shall assume below that a particular choice of time-orientation has
been made, so we can talk about "future" and "past" in a meaningful way. For
this class of spacetimes, there is a natural analogue [28, 29, 30], to the A we had
for the harmonic oscillator, which we shall call the the Lichnerowicz commutator
function and also denote with the symbol A. This is an antisymmetric distributional
bisolution to KG, and, with it, one immediately obtains a natural analogue for the
*-algebra of our harmonic oscillator example by quotienting the free *-algebra with
identity I over C on abstract elements (f>{f),f G C^°(M;R), by the commutation
relations

[W^(f2)]=i^f2)I

for all /i, /2 m C^°(M',K), together with the relations: (^(ai/i +02/2) = ^i^(/i) +
^2^(/2) for all ai, 02 in R and all /i, f^ in C^°(M', R) (i.e. linearity in test functions);
W = W tor all / G C^(M'^ R) (i.e. Hermiticity); and ^((D,+m2)/) = 0 for all
/ C C^°(A4; R) (i.e. the condition for (j) to be a weak solution of KG). The physical
interpretation of the resulting (f){f) would then be as a "smeared" quantum field
"J^^(^)/(a;)|det(^)|^d4^ for test-function /.

Further, one may define natural analogues for the symmetrized two point func-
tions, C?Q? of our harmonic oscillator Gaussian states to be elements2 of the set of
all bidistributions on M. - i.e. of bilinear functionals

(^ . /^OO ( k A . Tn>\ N^ ^00( \ A . 7n>\ __. TTDU- . UQ ^y^l, KJ X L/o [^l-, MJ —> K

satisfying the usual continuity properties - such that V/i, f^.-, f e C^°[J^i\ R),

(a) (symmetry) G(/i, f^) = G(/2, /i)

(b) (distributional bi-solution property) G({0g + m2)/!,^) = 0 == G{f\ (Do +
^)/2)

(c) (positivity) G(/,/) > 0 and G(/i, f^G(f^f^ > |A(/i,/2)|

(d) (Hadamard condition) "G^xi^x^ = -g1? (U^xi^x^P1 + V(x^,x'i) \og\a\ +
W{x^x^}Y

2The set of bidistributions, G on M, satisfying Conditions (a), (6), and (c) is in one-one
correspondence with the set of so-called quasifree states (see e.g. [48]). This is only a small subclass
of the set of all states (in the "algebraic sense" [2], i.e. positive, normalized, linear functionals on
the field *-algebra). However, for every non-quasi-free state, there will be a quasifree state with
the same two-point function, so the non-quasi-free states differ only in their n-point functions for
n ^ 2; cf. [48]. Moreover the quasi-free Hadamard states, i.e. those which in addition satisfy
Condition (d), play an important role in that, as conjectured in [31, 32] and proved in [33], they
are locally quasi-equivalent and thus determine a unique local folium (see [2]) of states and this is
believed to be the physically relevant local folium.

IX-8



The last condition, the Hadamard condition, has no analogue for systems with a
finite number of degrees of freedom such as our one-degree-of-freedom harmonic
oscillator model and is a restriction on the nature of the (necessary) singularity
in the "unsmeared" G (elsewhere locally a smooth function) for pairs of points
which are null separated. It is believed to be a physically necessary condition,
motivated in part by the equivalence principle, and in part by the requirement that
the state denoted by the G in question should give a finite expectation value for the
quantum (renormalized) stress-energy tensor (see especially [34]). A naive statement
of the condition is that the formula in quotes above should hold locally (and in the
sense of smooth functions for nearby pairs of non-null-separated points) where a,
£7, V, and W are all defined on a neighbourhood of the diagonal in Ad x .M; a
denotes the squared geodesic interval between x\ and n:2, U (normalized so that
U(x^x) = 1) and V are smooth two-point functions which are determined by a
standard procedure due to Hadamard (U in closed form and V, by certain Hadamard
recursion relations^ as a formal series in powers of a with coefficients which are
smooth two-point functions) in terms of the geometry alone, while W (determined
by another, standard, set of Hadamard recursion relations, again as a formal series
in powers of a with coefficients which are smooth functions) also depends on, and
characterises, the state in question. But to spell out a mathematically meaningful
statement of the condition, more must be said to replace the formal power series by
genuine smooth functions, and also one apparently (but see Radzikowski^ local-to-
global theorem below) needs to supplement this specification of the singularity for
nearby null separated points, by a statement to the effect that G is non-singular at
all pairs of spacelike separated points. We refer to [3] for all the details.

What I wish to emphasize here is firstly that this condition has played a very
important role in most of the deeper mathematical results concerning "quantized
KG", secondly that the "mathematically messy" nature of the condition has been
one of the major causes of technical difficulties in establishing these results, and
thirdly that, as I have already mentioned in the introduction, an important break-
through was achieved in 1992 when Marek Radzikowski succeeded in replacing the
condition with a technically much cleaner statement [4, 35] couched in the language
of microlocal analysis, namely:

( d 7 ) (Wave Front Set [or Microlocal] Spectrum Condition) {(.TI, pi; x^, ps) ^ T^(A4 x
A^O) | x\ and x<z lie on a single null geodesic, p\ is tangent to that null geodesic
and future pointing, and p^ when parallel transported along that null geodesic
from re 2 to x-i equals -pi} = WF{G + zA)

Here, we denote elements of the cotangent bundle of.M by pairs {x,p), x an element
of At, and p a covector at x\ 0 denotes the zero section in T"{M x .M); and we say
that a covector is tangent to a curve at a point if the vector obtained by "raising
an index" with the metric is tangent to the curve at that point.

Radzikowski in fact proved [4, 35] that, in the presence of Conditions (a), (6)
and (c), Conditions (d) and ( d ' } are equivalent.

Examples
Example 1' . D<?) = 0 in Minkowski space (R4 ,^) (i.e. KGO with m2 == O):
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A = 6{cr)£{t, - ts)

where a = ^a&(^? — xol)^x\ ~ xt2) anc! ̂ (5) ls ^e step function which is equal to 1 if
s > 0, and to - l i f 5 < 0.

This example is of course so special that our principle of democracy doesn't hold
for it: Exceptionally, there is a preferred symmetrized two point function (i.e. that
of the usual Minkowski vacuum state) which we shall call Go:

r 1 p1
Go = "^a-

Equivalently,
1 1

GO+^A
27T2 a - 2ze(ti - ̂ ) - ̂

where we use the usual informal "epsilon notation" to denote a distribution which
arises as the boundary value of an analytic function.

Example 2: (Strictly, "Examples 2 and 3" are not examples but rather lower di-
mensional analogues. Especially, note that the Hadamard condition (d) needs to
be adapted appropriately to 1 + 1 dimensions - see [59].) KGO with m2 = 0 in
1+1-dimensional Minkowski space (R2,77). This is of course just the standard 1+1-
dimensional wave equation, which, with the usual double-null coordinates ([/,V),
may be written

92(^)
QU9V ~ '

A=J^-£/^0/i-V2).

Picture of A:

Again, there is a preferred symmetrized two point function which we shall also
call Go and which is specified by

Go + ZA = - 1 log[(l/i - L\ - Z6)(Vi - V2 - 26)]. (*)
Z7T

Actually, equation (*) suffers from the well-known [37, 38] ill-definedness of quan-
tized massless fields in 1 + 1 dimensions, and we should really say that Go + zA only
makes unambiguous mathematical sense after it has been at least once differentiated,
and then that (*) is just shorthand for the triplet of equations:

^(Go + z^)/9Jj\9U, = -(l/27r)((7i - U^ - ie)~\ ^(Go + z^)/9U^ = 0,

^(Go + z^)/9\\9\^ = -(l/27r)(li - 12 - ̂ )~2. (**)
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Example 3: KG with m2 = 0 in a given 1 + 1-dimensional (globally hyperbolic)
curved spacetime (A4^g):

To analyze this example, we exploit the fact that one can always (locally) find
double-null coordinates, (U, V) so that g = C(U, V)dUdV for some C°° function C
of two variables. It is clear that these coordinates are only fixed up to reparametriza-
tions

U^U(U}, V^V{V),
- below we shall refer to these as Virasoro reparametrizations because of the obvious
resemblance to that concept from string theory - and that, under these, C(U, V)
should be transformed to

C^V^^-C^V).
dU dV

One easily sees that KG on (.M,(?) arises as the two-dimensional wave equation
of Example 2 with respect to any of these choices of double-null coordinates. The
appropriate choice of A is then clearly locally identical with that of Example 2 for
any choice of (U, V) coordinates; one easily sees that it is unchanged under Virasoro
reparametrizations. On the other hand, equations (*) (or if you prefer (**)) above
defining Go in Example 2 are not unchanged under Virasoro reparametrizations.
Because of this, one gets lots of different symmetrized two-point functions, G, on
(.M,^) each one restricting, locally, to formula (*) (or (**)) for a different choice
of (C/, V) coordinates. No one of these G is to be preferred over any other, in
exemplification of our principle of democracy.
[end of Examples]

The first application of the equivalence between Conditions (d) and (d1) was to
the proof of the following theorem:

Local-to-Global Theorem (Radzikowski) (a more general result is proven in
[4, 36]): Given a globally hyperbolic spacetime (A^f,^) and letting A denote its
Lichnerowicz commutator function for KG, then if a bidistribution G on A4 sat-
isfies Conditions (a), (b), and (c) globally on M. and also satisfies Condition (d)
separately on each element of an open cover of M., then it actually satisfies Condi-
tion (d) globally on all of M.

This theorem confirmed the correctness of a conjecture which I had made a few
years earlier [32, 39]. Historically, it had been the difficulty of settling this conjecture
directly which had been the stimulus for the work by Radzikowski which led to his
discovery of the Wave-Front Set spectrum condition (d').

4. The Hawking effect
As a preliminary, we first discuss the Unruh effect which, interestingly, was

discovered simultaneously, in quite different contexts and with quite different moti-
vations, by Unruh [40] and by Bisognano and Wichmann [41]. The setting for this
is quantum field theory in Minkowski space (R4 ,^), and we shall illustrate it with
KGO ((D + m2)^ == 0). Consider the symmetrized two point function, Go, of the
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standard vacuum state, but restrict attention to the right wedge R = {{t,x, y, z) 6
R4 | x > \t\}

A

M'M. R

B

and take " time - evolution " to be the one - parameter family of wedge - preserving
Lorentz boosts. Then the Unruh effect is the fact that Go becomes the symmetrized
two point function of a thermal equilibrium state at "temperature" 1/27T.

To illustrate how this comes about, take the 1 + 1-dimensional massless case
(i.e. Example 2) and focus on the future boundary of the right wedge, i.e. the right
half of the null plane (now line!), A, i.e. {{t,x) C R2 [ t = x,t > 0}. In terms
of the ([/, V) coordinates of Example 2, this is {((7, V) C R2 | U > 0, V = 0} and
Lorentz boosts act as dilations: U —^ erU (where r is the usual rapidity}. Defining
a new coordinate u by [7 = e^, these dilations become r-translations and, in terms
of them, one easily sees from Formula (**) in Example 2 above that

^(Go+zA) 1 / fu,-uA fu^-uA \~2

-Q^T = -T. (CTP (-H -exp \—} -tt)
which is easily recognizable by the (twice differentiated) two point function of a
thermal state at "temperature" 1/27T restricted to left-moving modes. (And a similar
story of course holds for the past boundary of the wedge/right-movers.)

There are many mathematical results related to the Hawking effect (see e.g.
[42, 43, 44, 45, 46, 47]). We briefly discuss one of them. Simplifying the wording
slightly (the full statement includes some further technicalities) a special case of it

Theorem ([3], see also the generalization in [48]): On the maximally extended
Schwarzschild spacetime of mass M\ there is a unique Schwarzschild - isometry -
invariant bidistribution, G, satisfying Conditions (a)/(&), (c)^ (d), and moreover the
corresponding quantum state, when restricted to the exterior Schwarzschild region is
a thermal state at the Hawking temperature l/SnAI.

We remark (cf. the classic paper of Rindler [49]) that to visualize the Kruskal
spacetime one can re-interpret the picture of Minkowski space drawn above accord-
ing to the substitutions:

Minkowski space —> maximally extended Schwarzschild spacetime
null planes A and B —> horizons
right wedge, R (each point a copy of R2) -)- exterior Schwarzschild region (each
point a copy of S2)

one-parameter family of wedge-preserving Lorentz boosts —^ Schwarzschild isome-
tries
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Moreover, the above theorem also respects this Rindler analogy in the sense that
it remains true if we substitute KG by KGO and substitute the phrases to the right
of the above arrows by the phrases to the left, provided we also appropriately change
the Hawking temperature from I/STTM to 1/27T.

One of the key steps in the proof of this theorem, when adapted to the lat-
ter Minkowski space version, is the demonstration that, for any bidistribution G
satisfying the conditions of the theorem,

92(G+i/\) = —([/i -1/2 - ie)-28(y, - 2/2)^1 - ^2).
Vi==V2=0 47rQU^QU^

Here we use coordinates (£7, V, y, z) where U == t + x and V = t — x, so, geometri-
cally, the restriction is to the null plane, A, which, back in the Schwarzschild case,
corresponds to a horizon.

The uniqueness part of the theorem flows from the manifest uniqueness of the
right hand side of this equation. The statement about thermality flows from the
observation that the right hand side of this equation is identical (except for the delta
function terms) with the two point function for the Minkowski vacuum state of our
Example 2, combined with the remarks we made in the second paragraph of this
section in explanation of the Unruh effect for Example 2.

This demonstration was quite difficult and we refer to [3] for the details. The
interested reader may find the following, much easier, exercise a useful preliminary:

Exercise: Show that the above formula holds in the case one substitutes for G+i/\,
the special value (i.e. Go + zA of Example 1 in the case m2 -==- O):

Go + zA = ———[(t/i - U, - ze){V, - V2 - ze) - (yi - y^)2 - (^i - z,)2]-2.
ZTT"

5. Ruling out time-machines
So far, we have stayed within the realm of globally hyperbolic spacetimes. But it

is also interesting to ask to what extent the theory might generalize to non-globally
hyperbolic spacetimes. Starting with [53], one recently much discussed direction in
which to attempt generalization is to ask about spacetimes in which a time-machine
gets manufactured. (See also [50] for other non-globally hyperbolic spacetimes.)
Such a spacetime must, by arguments due Hawking [51], schematically look like

Region with closed timelike curves

Cauchv horizon —^

Initial globally hyperbolic region
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The whole spacetime will be time-orientable and contain an initial globally hy-
perbolic region, but there will also be a region with closed timelike curves such that
the two regions share, as their common boundary, a compactly generated (see [51])
Cauchy horizon. (We recall that, in general, a Cauchy horizon is necessarily a -
not-necessarily smooth, see [52] - null surface.) Within the framework described
in the present talk, I, Radzikowski and Wald ([54], see also [55, 56]) obtained sev-
eral no-go theorems for a class of spacetimes which includes all spacetimes which
tend to suggest the conclusion that (at least "semiclassically describable" - see [57])
time machines are not physically realizable. Special (actually weaker) cases of these
theorems are

Theorem 1 [54]: On such a spacetime, there does not exist any antisymmetric dis-
tributional bisolution A such that any neighbourhood of any point contains a globally
hyperbolic subneighbourhood on which A coincides with the intrinsic Lichnerowicz
commutator function of that subneighbourhood.

(In the terminology of [50], Theorem 1 amounts to the statement that this class
of spacetimes is non-F-quantum compatible.)

Theorem 2 [54]: On such a spacetime, there does not exist any bidistribution, G,
satisfying Conditions (a) and (b) and a weak local version of Condition (d).

The proof of each of these theorems makes use of a geometrical lemma to the
effect that the Cauchy horizon of such a spacetime, (M,g), must necessarily con-
tain certain special points (called base points in [54]) with the property that every
globally hyperbolic neighbourhood At of a base point contains two other points, r,
and 5, say, located inside the initial globally hyperbolic region of (M,g) and such
that r and s are connected by a null geodesic in the total spacetime, but cannot
be connected by a causal curve lying within Af. In the case of each theorem, this
geometrical lemma is then easily combined with a suitable microlocal propagation
of singularities theorem ([7] Vol. IV), and the fact that on sufficiently small neigh-
bourhoods of a globally hyperbolic spacetime, (A/", g ) , the Lichnerowicz commutator
function of (A/", g) (respectively, any bidistribution, G, on (A/", g) satisfying Condi-
tions (a) and (6) and the weak local version of (d)) is only singular for null separated
pairs of points, to obtain a contradiction.

6. A new semi-local vacuum concept
The principle of democracy amongst our symmetrized two-point functions, G, is

very fine. But, in practice, we can tell the difference between, say, an empty room
and a room containing 10 tons of lead!

empty room room containing
10 tons of lead
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As was recognized as early as 1976 by Hajicek [58], there surely ought to be
some way to reflect this in the theory of quantized KG with an appropriate "ap-
proximate local vacuum" concept. However, up to now, as far as I am aware, no
clean mathematical notion for such a thing has ever been formulated.

I believe that what is lacking is something along the following lines:
Idea for a Definition: Given a, say, globally hyperbolic spacetime (.M,^) and
given any point p G M then a symmetrized two point function, Gp, for a semi-local
vacuum state around p is a bidistribution, Gp, defined on a neighbourhood A/p of
p and satisfying conditions (a), (&), (c) (with A interpreted as the restriction of
the Lichnerowicz commutator function from M. to Afp) and (d) on Mp which also
satisfies the additional property that Gp on Np looks as closely as possible near p
to Go for KGO on Minkowski space.

The problem is of course to decide on a suitable precise notion to substitute for
the phrase "looks as closely as possible near p to Go for KGO on Minkowski space".

In the case of the 1+1 dimensional massless scalar field (i.e. our Example
3) I have, with help from Andrew Borrott and Claes Cramer [59], arrived at the
following notion which, it will be argued in [59], gives a very satisfactory solution
to this problem: One defines Gp amongst the class of G described in Example 3 by
fixing the Virasoro invariance in G with the demands3:

y'r1 r^G([/ ,y)(p)=(o,o), G ( O , O ) = I , -- - 0 = - - W O N .
au (0,0) ov (0,0)

I am presently working together with Stefan Hollands [60] on some ideas towards
a suitable counterpart to the above notion in the case of massive fields and 1+3
dimensions.
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