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GDR 1151 (CNRS)

On the distribution of resonances for some
asymptotically hyperbolic manifolds

R. G. FROESE and P. D. HISLOP

Abstract
We establish a sharp upper bound for the resonance counting function

for a class of asymptotically hyperbolic manifolds in arbitrary dimension,
including convex, cocompact hyperbolic manifolds in two dimensions. The
proof is based on the construction of a suitable paramatrix for the absolute
5-matrix that is unitary for real values of the energy. This paramatrix is
the ^-matrix for a model Laplacian corresponding to a separable metric near
infinity. The proof of the upper bound on the resonance counting function
requires estimates on the growth of the relative scattering phase, and singular
values of a family of integral operators.

1. Introduction
We sketch an outline of the proof of a sharp upper bound on the counting func-

tion for resonances (or scattering poles) for the Laplace operator on asymptotically
hyperbolic manifolds of dimension greater than or equal to two. This class of mani-
folds includes infinite volume, convex, co-compact hyperbolic manifolds in dimension
two (cf. [8, 14]). Our main technical results are two: A bound on the singular values
of a regularization of the scattering operator, and an estimate on the growth of a
relative scattering phase. The key observation is that a parametrix for the absolute
5-matrix can be constructed which is unitary on the critical line. This construction
uses the fact that the manifold admits a product structure and a boundary-defining
function in a neighborhood of infinity. Our main theorem is the following.

Theorem 1.1 Let X be an n-dimensional asymptotically hyperbolic manifold sat-
isfying Hypothesis 1 given below. Let v(r} denote the number of scattering poles
contained in the semicircle of radius r > 0 centered at the origin. Then, for each
n > 2, there exists a constant 0 < Cn < oo, such that we have the upper bound

^^Cn^+i).
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It is know from explicitly computable examples of hyperbolic manifolds that
this upper bound is sharp. There have been many results on the distribution of
scattering poles for hyperbolic manifolds. Guillope and Zworski [9] proved an upper
bound of the form y{r} < <7(r14'71 +1), for complete manifolds of constant negative
curvature at infinity in dimension n > 3. Using the Selberg zeta function associated
with the convex, co-compact hyperbolic manifold, Patterson and Perry [18] proved
the sharp upper bound y{r} < Cn^ + 1), for arbitrary even n > 2. Using some
results of Bunke and Olbrich [I], Patterson and Perry were able to extend their
results for odd n odd. Quite recently, Perry [22] proved a Poisson formula for
convex, cocompact hyperbolic manifolds used this to prove lower bounds of the
same type on the resonance counting function. The methods of the Selberg zeta
function appear to be very rigid. Our work is an attempt to use the 6'-matrix
directly in order to prove these bounds. This allows us to include perturbations
of the metric having rapid decay, as will be described below. Unfortunately, our
present work cannot be applied directly to convex, co-compact hyperbolic manifolds
of dimension n > 3. Our methods do prove, however, the following result. For any
two constants 61 > 0 and €2 > 0, let ^^(^ be the number of scattering resonances
in the sector TT + €1 < argz < —62 in the lower-half complex plane. Then, for
any asymptotically hyperbolic manifold, there exists a constant C^^ > O? so
that ^ei^7') < C1n,€^€2(rn +1)- We do not presently have enough control on the
parametrix used in the proof of this estimate in order to extend the results to the
full half-disk.

The case of dimension n == 2 is special. Guillope and Zworski [10, 11] proved
upper and lower bounds on the resonance counting function ^(r), and very precise
asymptotics on the relative scattering phase. This analysis is facilitated by the fact
that in two dimensions, the metric near an end at infinity is an exact product metric.
In [II], the Guillope and Zworski prove that there exists finite, nonzero constants
c and C such that cr2 < u(r} < Cr2. Refining this analysis, Zworski [26] proved
that the density of scattering poles in a subconic neighborhood near the real axis
is controlled by the Hausdorff dimension of the limit set of the group of hyperbolic
isometrics F.

Upper bounds and asymptotics for scattering resonances have been the topics of
many recent papers. We refer to the review article of Zworski [27] for an account of
much of this work.

2. Preliminaries and Outline of the Proof
It is well-known that the absolute 5'-matrix 5(/c) for an asymptotically hyperbolic

manifold X is a pseudodifierential operator of complex order —2zfc, k C C [13].
The meromorphic continuation of the 5'-matrix in the hyperbolic case has been
proven in several works, including [1, 15, 16, 19, 6]. An interesting feature of the
absolute 5'-matrix for asymptotically hyperbolic manifolds is that it is not of the
form S(k} == 1 + T{k}, for some operator T{k) in the trace class, as in the case
of Schrodinger operators with potentials that decay as l.rl'"^"^6) near infinity. We
can, however, construct a paramatrix S^k) so that So{k)~lS(k) •= 1 + T(k), with
T(fc) trace class. Furthermore, the operator So(^) extends meromorphically to the
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entire complex plane with computable poles. Such an operator is constructed in
[6] (and, implicitly, in [1]) for a general class of geometrically finite, infinite volume
hyperbolic manifolds, including cusps. The difficulty with that paramatrix is that
So(k) is not unitary on the Sfc = 0 axis. This parametrix, however, can be used to
obtain the estimates on the resonance counting function for a sector mentioned in the
introduction. In this note, we sketch the construction of a paramatrix for S{k) that
is unitary on the Qk == 0 axis, and satisfies the same conditions mentioned above.
Once this paramatrix is constructed, the proof of the upper bound on the resonance
counting function will follow from Lemma 2.1, as explained below. Because the S-
matrix satisfies the functional relation S(k)S(—k) = 0, for k € (T, the poles of S(k)
for Qk < 0 correspond to the zeros of S{k) for Qk > 0. It will be more convenient
to count the number of zeros of S(k) for Qk > 0.

With reference to the relation ^(A:)"1^) = 1 +T{k), let T(k) be an operator-
valued function analytic on the half-space Qk > 0, continuous onto the real axis,
and in the trace class for Qk > 0. We further assume that (1 + T(k)) is unitary for
Qk = 0, and that T(0) = 0. Let F(k) = det (l+T(fc)). This function is analytic for
Qk > 0 and continuous onto Qk = 0. For any r > 0, we denote by ^(r) the number
of zeros zi of F{k) satisfying Qzi > 0 and \zi\ < r, including multiplicity. We define
an averaged quantity N(r) by

N(r) = f^ ̂  dt. (1)

Since \F{k)\ = 1, for ^sk = 0, we define the scattering phase s (A;), for k € IR, by
s{k} = (—%/27r) log F(k). We will see that this is an analogue of the scattering phase
in the usual Schrodinger operator setting.

Lemma 2.1 Let F{k) = det (1 + T{k)) be as defined above. Then, we have

N(r} < -^f^~lW - s(-t)\dt+ ̂ fj log |F(r^)| d0. (2)

The proof of this simple lemma is given in [3]. Let us note that we can recover
an upper bound on v(r) from one on N(r) by using the positivity and monotonicity
of z/(r). We have

r2r /-2r ^(f\
ry(r} < \ v(t}dt < 2r v / ^ , (3)

Jr JT t

from which it follows that v(r} < 2{N{2r) — N(r)). Consequently, it suffices to
obtain an upper bound on yV(r). This requires an upper bound on the scattering
phase s{t) of the form ^n, and an estimate on the growth of \F{re^e)\. as r —^ oo,
of the form e0^^.

In the next section, we review the structure of the S-matrix associated to X, and
show how to construct the ^-matrix So(k) using the geometry of the manifold X.
We will denote by P the Laplace-Beltrami operator on X with an asymptotically
hyperbolic metric g . The spectral theory of P is well-understood [6]. The approxi-
mate 5-matrix 5o(fc) is associated with an approximate operator Po defined on the
end of .Y obtained by removing a compact set U. The scattering phase s{t) is the

VH-3



usual scattering phase associated with the pair (Po,P). In section 4, we will esti-
mate the relative scattering phase defined by s{k) = (-i/^} log {det So(k)~lS(k)},
for k € IR. This estimate is obtained by following the method of Robert [23, 24]
(see also Christiansen [2]). The method of Robert requires the construction of a
pseudodifferential operator Ao which satisfies [Po,Ao] = Po, near infinity, up to a
smoothing operator. The operator Ao has a symbol a that is a global escape function
for the symbol of the approximate operator PQ. The idea behind the construction
of this symbol is given in section 5. In section 6, we estimate the singular values of
certain integral operators. These estimates are the key to estimating F(re^). The
estimate on the growth of the scattering phase and on the singular values are the
two main steps in the proof of Theorem 1.1. The details and proofs will be given in
[4].

3. The Geometry of Asymptotically Hyperbolic Manifolds
We introduce the class of manifolds for which our methods work. The key

assumption is that the metric can be well-approximated by a product metric near
infinity. This model metric will provide a model operator Po for which we can apply
the usual methods of scattering theory to the pair (Po, P).

3.1. Description of the Metric

Let X be a precompact Riemannian manifold with metric g . We assume that
the boundary 9X of X is a nonempty, smooth, compact manifold, and such that the
closure X is compact. A boundary-defining function for X is a real-valued function
x defined on a neighborhood X\U, for a compact set U C X, of the boundary
9X of X. A boundary-defining function satisfies 9X = [p e ~X | x(p) = 0}, and
dx 9X ̂  0.

A manifold X of the above type is called asymptotically hyperbolic if for some
compact U C X, the neighborhood of 9X given by X\U, admits a product decom-
position X ~ 9X x (0, 6), for some e > 0, and that there exists a boundary-defining
function x : X\U -)- IR, satisfying \\dx\\ \9X = 1, so that metric g on X\U has the
form

dx2 +h{x,dx,y,dy)
(4)x2

Furthermore, the function h has the property that h\9X is a smooth metric on
9X. It was observed in the article of Mazzeo and Melrose [16] that for metrics of
this form, the sectional curvature computed along a smooth geodesic near 9X, and
running to the boundary point p G 9X, approaches -1. We will write ( x , y ) for
coordinates on X\U near 9X, with y denoting local coordinates on the compact
manifold 9X.

It is well-known, and proved explicitly in [13], that coordinates can chosen so
that h { x , y , d x , d y ) is independent of dx. We will assume that this has been done.
The form of the metric g near 9X suggests a model for the end of X near 9X given
by X\U. There, we define a model metric go as follows. Let ho{y.dy) = h{0,y,dy)
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be the metric on 9X associated with h. We define the metric go on X\U by

_ dx2-{-ho(y,dy)
9° - ———^2———• (5)

The model space for the manifold (X,g) is the manifold (X\U,go). Note that the
model metric is separable, and hence we will be able to do computations involving go
explicitly. We need to make one crucial assumption on the behavior of h as x -> 0.

Hypothesis 1. In any local coordinate chart for 9X, the difference

h(x, y , dy) - ho(y, dy} = O^"-1^), (6)

for some e > 0, and uniformly with respect to y e 9X.
This hypothesis is satisfied, for example, by a class of perturbations of convex

cocompact hyperbolic manifolds in two dimensions.

3.2. The Laplace-Beltrami and Model Operators
The Laplace-Beltrami operator P on L2(X, dVg), where dVg is the volume form

associated with the metric g given in (4), is constructed from the asymptotically
hyperbolic metric g on X (we can actually allow more general P). In the coordinates
(x, y) near 9X, the operator P has the form

P = -:r"(det /z)-1/2!^2-^ hY'2^ + x2^), (7)

where we write A/; (x) for the nonnegative second-order elliptic operator in 9X,
depending parametrically on x, and given by

A/^) = -(det ^-Vz-^det / z ) 1 / 2 ^ 9 . (8)
9yi 9yj v /

Here, the matrix h^ is the inverse of (n - 1) x (n - 1) matrix h appearing in
(12). The operator P is self-adjoint on L2(X, dVg). We note that this Hilbert space
admits the decomposition, relative to a boundary-defining function x and product
decomposition of X\U, as

L2{X, dVg) = L\U, dVg} C L^9X x [0, e], ;r-"^det(/i) dx d^y). (9)

We next consider the model manifold (X\U,go). In the coordinates (.-c.y). the
(formal) model operator Po has the form

r\ ^\

?„ =-^"-'-r2""—-l-T2^,- dn\
" 9x 9x+ /l0' (10)

where we denote by A^(, = A/,(0) the nonnegative Laplace-Beltrami operator on 9X
with the induced metric ho(y, dy) as in (5). In order to obtain a self-adjoint operator
PO on the Hilbert space L'2{9X x [O.cj.dl^), where dVg^ is the volume form for the
metric go in (13), we impose Dirichlet boundary conditions on the surface x = e.
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It will be convenient to map X\U = 9X x [0, e] onto 9X x [- log e, oo) through
a change to geodesic coordinates by the transformation r = - log x. Near X\U, the
metric g becomes

g = ^4- e^e-'.y.dy) and dV, = e^-^^/det^)^^) dr^-^. (11)

In these coordinates, the model metric go becomes

^ = dr2 + e^hoiy^ riy) and dV,, = e^-^^/det^y) drd^y. (12)

Let us rescale the r variable so that e = e~1. This is effected by a change of the
boundary-defining function to u = [ee}~^x. One can easily check that the metrics
g and 90 have the same forms as in (4) and (5) with a new function h. The metric
induced on 9X by taking h at u == 0 is conformally equivalent to the metric ho.

It is convenient for calculations involving only the model operator Po to make
one further unitary change of Hilbert space to remove the factor e^"1^ from the
volume forms appearing in (11) and (12). We change to the Hilbert space Ll2(9X x
[l,oo), dr dVho{y)). The volume form dV^ = ^/det(/io) d^y is the one on the
compact manifold 9X associated with the metric ho. After performing the standard
unitary transformations, the model Laplacian Po on L2(9X x [l,oo),dr dV^} has
the form

Po——^+e-^A^+c^ (13)

where Cn == (n - 1)/2, and A/io is the operator

A,, = -(del ̂ -^^-(det h^l2^^ (14)

and Dirichlet boundary conditions are imposed at r == 1. This form is convenient
for calculations because the operator Po is separable.

For comparison with the operator P, however, we must make a unitary change
of Hilbert space so that the Hilbert space associated with the end X\U can be
naturally identified with a subspace of L2(X,dVg) as in (9). For this, it suffices to
define the unitary map V as V : Ll2(X\U,drdVko) -^ ^(X^.drdV^), by Vf =
{ det ho/ det ^}1/4/. We define the operator Po, unitarily equivalent to Po, by Po =
VPoV~1. We can now compare the operators P and Po acting on functions in
L^Y^, dVg) = L<2{9X x [1, oo), ^/det{h) dr d^y}. Let \ be a smooth function of
compact support in X so that (1 - ̂ ) is supported in the end X\U. It follows from
Hypothesis 1 and a simple calculation that the coefficients of (P - Po)(l — \) are
0^-(n-i+6)r^ ^ ̂  denote the difference P-?o by J?i. The estimates mentioned
above imply that for any / € S{IR), the operators J?i(l - x)f(P), and^i/(Po)(l -
^), are trace class on L^^X^dVg}.

3.3. The 5-Matrix
The 5-matrix S(k), for k G IR, is defined through the asymptotics of the solution

of a Dirichlet problem at infinity. Let / € C^{9X}. Except for possibly a countable
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set of exceptional points k, there exists a unique solution u of the problem

(A-^2-^)2)^, inX, (15)

having the asymptotic form

u(x,y}~xvi^•~ikf+(x,y)+x:l^+i':f_(x,y), (16)

as x -)• 0, and /_(0, ?/) = f. The 5'-matrix is defined as the map

S(k}f=U(0,y). (17)

In a recent work of Joshi and Sa Barreto [13], the ^-matrix is computed in
terms of a boundary-defining function x and metric as in (4). Let A/io be the
nonnegative Laplace-Beltrami operator on 9X with the metric ho. They prove that
if \h(x,ydy) - ho(y,dy)\ = ;r'7(y), then

S(k) = 22^<^-WA^fc mod OPS^-^QX). (18)

As for the model manifold with the product metric (5), it is easy to compute
(cf. [8, 13]) the ^-matrix exactly. It is given by

50(fc)=22^^I^^)A^+J^OOW• ^

The remainder operator R^ e OPS~°°(9X) is exactly computable in terms of
a ratio of modified Bessel functions. The model Hilbert space I?{QX x [l,oo),
dr ^det(ho) d71"1?/) admits a direct sum decomposition relative to the spectral reso-
lution of the Laplace-Beltrami operator /\^. Let {A] > 0} denote the eigenvalues of
A/,o. Let co(k) denote the common factor co(A;) == 22ik^(ik)^{-ik)~l. The operator
Roc (k), restricted to the eigenspace of A/^ corresponding to eigenvalue A2, is the
operator of multiplication by

r> / j \ / 7 \ ^ 2ih /2sin(zA;7r)\ / Kik(\i)\/7 / j^ \ . — _nr . i ] ^ \ \~Z^K I ____v___/ I I l'K\ J ' \ ic\r\\^oo[K)j - W)^ 1 — — — - — — — I I-——T—Y. (20)
\ 7r / \ l - ^ k [ A J ) /

Notice that So(k) can also be written as

^oW^CoWA^f,^^). (21)
V_^A/J;

^,From this expression, it follows that

5o(fc)-1 = co{k)-1^ + R^(-k). (22)

It will be convenient to introduce another operator Roo(k) defined by

R^(k) = Co^-^^A-)

2sin(^7r) (K^^A^)^
= ————— [l^)) • (23)
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In terms of this operator, the inverse of So(k) can be written as

5o(fc)-1 = (1 + R^{k)}co{k)-1^. (24)

Let Rn(k) e OPS^-^-^^QX} denote the remainder in the formula (18) for
S{k). It follows from (23)-(24) that So(k)~1 is a paramatrix for S(k) and that

S,(k)-lS(k) - 1 = coW^A^/o) + ^(^Co(A:)-lA^J^,(^) + R^{k)
= T,{k)+W+T,{k). (25)

This formula, initially valid for Qk = 0, can be extended to Qk > 0. The operator
T^(k) is a meromorphic, trace-class valued operator for Sfc > 0, with at most a
finite number of poles in Qk > 0, and none on the real fc-axis. Following the work
of [6] 5 one can compute an explicit formula for Rn(k) in terms of certain limits
of generalized eigenfunctions for P. ^From this formula, one proves that Ti{k)
and T^{k) are trace-class, operator-valued functions on Sfc > 0, and continuous
on Qk = 0. We discuss these terms further in section 6. Finally, the product
So(k)~lS(k) is unitary for Qk == 0. Consequently, with reference to the discussion
at the end of section 2, we study the relative scattering phase defined through
log(det(l + Ti(A;) + T^k) + T^(k))), for Qk = 0. As for the behavior in Qk > 0, we
compute the growth of the determinant through a singular-value estimate. These
estimates will yield the upper bound for ^(A:), as shown in section 2.

4. Bounds on the Scattering Phase
We prove an upper bound on the scattering phase for a geometrically defined pair

of operators (Po, P) introduced in section 3. These operators on the manifold X are
associated with the metric g having the form (4), and the model metric go as in (5),
respectively. We define an operator I as the restriction operator I : L2(X^dVg) —>
Z/^J^L^dVp), and 7* is the corresponding extension operator given by the identity
map. Given Hypothesis 1, it is well-known in that we have a trace formula,

Tr(/(P) - J*/(Po)J) = - / f'(\W)d\. (26)

The function <^(A) is the Krein spectral shift function.

Theorem 4.1. Under Hypothesis 1 on the pair {go^g}, the Krein spectral shift
function ^(A) is the relative scattering phase s{k) for the pair (PQ.P), and satisfies
the estimate,

K(A) |^^( |A |"+1) , (27)

for some finite constant Cn > 0, independent of A, and depending on the dimension
n.

The identification of the Krein spectral shift function for the pair of Laplace-
Beltrami operators (Po, P), described in section 3, with the relative scattering phase
for this pair. follows from an application of the Maass-Selberg relation. Here, we
sketch the idea behind the proof of the upper bound on the function <^(A) .
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In order to obtain the upper bound in Theorem 4.1, we modify the method of
Robert [23] (see also Christiansen [2]) in order to apply it to operators P of the
type encountered here. There are two difficulties in treating the pair (Po, P)- First,
as discussed in section 3, for any smooth function ^ with U C supp ^, we have
(P — Po)(l — x) = ^1(1 " x)? 8Ln(^ the coefficients of the second-order operator R\
decay according to Hypothesis 1. Secondly, we do not have an exact commutator
relation like [Po, Ao] == Po, as in [23]. Rather, we construct a skew-adjoint conjugate
operator Ao satisfying

[PO.AOJ-PO+^N, (28)

where R^ € OPS^^, for arbitarily large N . We will use Po to denote either the
operator Po, as in (19), acting on L^^X^^x^dx dl^o)? with Dirichlet bound-
ary conditions on 9U', or the operator Po, unitarily equivalent to Po, acting on
^{X^^x^dx dV/i), with Dirichlet boundary conditions on 9U.

Our goal is to estimate Tr{Ep(I\) — FEpQ(I\)I}, for large A, where Ep{I\) ==
^(P), and \\ is the characteristic function of an interval I\ = [Ao,A], ^or some

fixed Ao > 0. By standard arguments [23], we can pass from a smooth functon /
of compact support, and the operators /(P) and /(Po), to the spectral projectors
for P, and Po, respectively, and the interval I\. Let V be a precompact set with
U C V. Let \jj be a smooth cut-off function with compact support contained in V
and \u I U == 1. For a function / € S^IR^} supported away from 0, we write

Tr{/(P) - J*/(Po)J} = Tr{^(/(P) - r/(Po)J)}

+7V{(1 - Xu){f{P) - ̂ */(W)}- (29)

We will deal with each piece of the trace separately. We call the term containing
Xu the interior trace term, and the term with (1 — xu) the exterior trace term.

It is a standard result that the compactness of the support of xu^ and the ellip-
ticity of P and Po away from 9X^ insure that the operators Xuf(P) a^d I*Xuf{Po)I
are both in the trace class. Well-known asymptotics for the counting function for
elliptic operators on compact manifolds allows us to conclude that

\Tr{xuEp{h}-rxuEp,{Ix)I}\ < C\\\\ (30)

The exterior trace term is written as

7V{(l-^)(/(P)-r/(Po)/)}
= 7V{(1 - xu){PP~lf(P) - rPoP^f{Po}I}
= Tr{P{l - xu)g{P) - PPo(l - XuWW

+Tr{[P. xu}g(P) - r[Po, Xu}gWl}. (31)

where g{x) •= x~lf(x). It follows from the fact that the commutators [;<[/?-P] and
[^(/,Po] have compact support, that each term of the second factor on the right in
(31) is trace class. By an argument similar to the one used for the interior term,
each term is bounded above by |A|". We now concentrate on the leading term,

Tr{P(l - Xu)g{P) - PPo(l - Xu)g(Po)!}. (32)
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Following Robert [23], this term can be written as

7V{P(i - xu)g{P) - rpo(i - xu)g(Po)!}
= Tr{A,[xu. P}P~lf(P) - A,[xu. PojPo-^Po)} + ̂  (33)

where the error term R^ is given by

R, = Tr{R,(l-xu)P~lf(P))}

+Tr{R,[A^xu}P~lf(P)}
+Tr{[A^R,(l-xu)]P-lf(P)}
+Tr{Rr,(l - xuWf(Po)I - P-V(P))}. (34)

The operator Ao is the conjugate operator for Po constructed in the next section.
In order to derive this representation, we use the fact that ^i(l — xu) = (P —

Po)(l — xu)^ so we can write a localized commutator relation for P similar to (28).
This relation has the form,

[Po,Ao](l - xu) = [P,Ao](l - xu) + (P - Po)[Ao,xd + [Ao,Pi(l - Xu)]. (35)

Simple manipulations lead to the expression

rr{P(i - xu)g(P) - r?o(i - xu)g(Po)!}
= Tr{Po(l - Xu)g{P) - r?o(l - Xu)g{Po)I} + Tr{J?i(l - Xu)g{P)}
= Tr{[P^ Ao](l - Xu)g{P) - ^[Po, Ao](l - Xu)g(Po)I} + ̂ 2
= Tr{[P,Ao](l - Xu)g{P) - P[Po,Ao](l - Xu)g(Po)!} + R^ (36)

where the remainder term R^ is given in (36). As for the first term in (53), we use
the trick introduced by Robert [23] in order to rewrite this term as the trace of an
operator localized to a compact region,

rr{[p,Ao](i - xu)g(P) - r[Po,Ao](i - xu)g(Po)!}
= rr{Ao[x^P]ff(P)-Ao[x^,Po]5(Po)}. (37)

The form of the exterior term given above follows from this.
^From standard trace estimates as used in the estimate for the interior term,

we derive the estimate, iT^AotP.xd^) - Ao[Po,xu]g{Po)I}\ < Co|A|71. The re-
mainder J?4 consists of four pieces. The first three terms are controlled by the rapid
decay of J?i as the boundary coordinate x —> 0. Finally, we consider the term
rr{7*P^(l — Xu)(g{Po)I ~ g ( P ) ) } ' The operator R^ has arbitrary large negative
order (see the next section). Using the functional calculus, we extract the decay of
(P - Po) from {g{P) - g(Po)). The operator 7^(1 - xu){P - Po) is trace class,
and the trace is bounded above, independent of A. The proof of Theorem 4.1 now
follows from these estimates.

5. Escape Function and Commutator Estimates
We mention how to compute a conjugate operator Ao for the operator Po, as

in (28), and prove that the remainder R^ has the correct properties. We begin
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by studying the classical system with Hamiltonian h(r^) = ^2 + e^p + c2, where
Cn = (n-1)/2, and p > 0 is a real parameter. The Hamiltonian function h generates
the geodesic flow on the cotangent bundle T*IR ~ IR x IR.

Proposition 5.1. Any function ao(r^), with (r,^) € IR2, satisfying the relation
{h^ao} = h^ has the form

ao(7''0 = 77~log (^=^1} + w' (38)4v / ^-^ w^-c^-^/
for an arbitrary function <1> of h.

Proof. It is easy to check that Go(r,^) has the desired property. Note that since
h- cin> ̂  for p + 0, the function ao(r,^) is well-defined. To show that any
function 0,0 satisfying {/i,Go} = h has this form, we study the dynamical system
generated by Hamiltonian h. The equations of motion are

r{t) = {h,r}=2!;(t) (39)

W = {h^}=2pe-2rW. (40)

The Hamiltonian is a constant of the motion. Let the initial point at t = 0 be
(^o^o)? and define ho to be the energy associated with the geodesic. We also define
(f>o = \^ho — c^. Then, the solutions are

r(t) = log(cos/i{24>o+Ci})+C'2, (41)
^) = <f)otanh{2t4>o+C^}, (42)

where the constants C\ and C-i are determined by the initial conditions, tanhCi =
^o^ and c'! = -^{(^op"172}. We now determine ao(^C) through the identity

ao(t) - ao(0) = { do{s)ds = f {h, a,o}ds = [ t h{r(s), ̂ (s))ds = hot, (43)
"O JQ JQ

that follows from Hamilton's equations of motion, the Poisson bracket condition
and the conservation of energy. It is important to note that the equations for the
trajectory (r(<), ̂ (t)) can be solved explicitly for t as a function of the initial point.
D

Given this consrtuction, it is easy to verify that for coordinates (r, y ) on IR x 9X,
the escape function ao((^ ?/), (^ ^)) has the identical form as in (38) where now the
Hamiltonian is

^((^ y), (^ r j ) ) = C + e-27- ^ h^(y)^ + c^. (44)
i,j=i

We now want to construct operator AQ so that the commutator [Po,Ao] is equal
to Po modulo a remainder R^r e OPS~N. To this end, we first construct the Weyl
quantization of the symbol ao. The Weyl quantization yields the operator AQ acting
on u € Co00,

AQU.(r.y)

= I e1^'^-^ aoO^ y-^), ̂  ̂ u{^ y'Wdy'd^. (45)
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Weyl quantization is useful because the commutator has a remainder term that is
one order lower than in the usual quantization (although! this is not essential). In
particular, the usual Weyl calculus yields

[Po,Ao]=Po+^ (46)

acting on functions localized near the boundary at infinity, where RQ G OPS°.
We need to improve this error estimate through iterations. For simplicity, we

write w = (r,y) and '0 = (^T]). The Weyl calculus yields an asymptotic expansion
for the symbol of Ro,

a(J?o)((r^),(^))- ^ 7——T-nT {Mo}2^i((^(^)). (47)
2j+lj>l ^ ' L ) '

The repeated Poisson bracket {h^ao}^^ is defined by

{h,ao}2j+i{u,v)
/ _ ^ \ 2.7+1

= 2(-^-J (a.•^-^•^)2J+l/l(^^)ao(^,2;)|^^^. (48)

We now continue the construction of the escape function. We look for a symbol
a_i G 5'~1 so that

{/i,a_i}=a^(J?o). (49)

Here, we denote the principal symbol of RQ by o'pr(Ro)- The explicit formulas for
the geodesic flow insure that we can solve this first-order, linear, nonhomegenous
equation by integrating along the characteristics. Let A_i be the Weyl quantization
of the symbol a-i. It then follows that

[Po ,Ao-A_i ]=Po+f i -2 , (50)

where P_2 € OPS~2. We now repeat this iteration jy-times, where j > n/2 + 1.

6. Bounds on Singular Values
The final major component in the proof of the upper bound on the resonance

counting function is the proof of bounds on the function F(k) == det(l+T(A:)) in the
upper-half plane. Let us recall that the form of the inverse of the absolute 5'-matrix
for the model problem 60 (fc) can be expressed as

S^k)-l={R^+l)c,(k)-l^ (51)

where the smoothing operator Roo{k) has an explicit spectral decomposition on
L2{9X,dV^) in terms of modified Bessel functions as in (23). The coefficient Co{k)
is defined before (20). Given this formula, and the formula (18) for the absolute
5-matrix, we can write

T{k) = {S^SW - 1) = E W^ (S2)
2=1
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where the operator-valued functions Ti(k) have the form:

W = coW-^J^),
W) = R^k^kr^^R^k)^
T,{k) = R^(k).

(53)

(54)

(55)

The singular values of T^{k) and T^k) are the most easy to treat because of the
explicit formulas given in section 3.2 for the eigenvalues of Roo(k)^ and the discussion
of Rn(k) given below. Consequently, we will not discuss these terms any further.

In order to estimate the singular values of Ti {k), the main term in (32), we need
an explicit formula for Rn(k). As in [6], one can obtain an explicit formula for Rn(k)
in terms of the analogue of the Eisenstein functions and the model resolvent. To
see this, we write a localization formula expressing R(k) in terms of Ro(k). Let ^,
for i == 1,2, be two smooth functions localized near 9X^ with support in X\U^ and
smooth up to the boundary. We can write

\iR(k)xj = XiRoWXj
-RQ(k)^Po]Ro(k)[P^Xj]RoW
+R,{k)[^PWk)[P^Xj}RoW
7Z(A;). (56)

The remainder term T^(k) depends explicitly on the difference R^ and the resolvents.
Consequently, the coefficients of this term vanish more rapidly than the others in
(56), and they will not affect the asymptotics. We won't consider 7i(k) further
but refer to [4]. The boundary-values of the resolvents are controlled by a limiting
absorption principle proved via the Mourre theory using the conjugate operstor Ao
constructed in section 5. We can now take weighted limits of the terms in (56). We
obtain a representation of the generalized eigenfunctions for P in terms of those for
PO, and proceed as in [6].

We present a result that can be applied to more general situations than those
discussed here. In particular, this result can be used to prove the sectorial bounds
on the resonance counting function mentioned in the introduction. The following
result holds for certain integral operators in 1R71 that are obtained by localizing to
a coordinate patch. It is then seen to be sufficient to prove bounds on the singular
values of operators on ^(IR71) of the form CQ(k)\o/\]k^iK^. Here, k is a complex
number with ^k > 0, and the functions \ are cutoff functions, and K is an integral
operator (depending on k) whose kernel satisfies the bounds given below. The
Laplacian here is the Laplacian A/^ extended smoothly to 2R71.

Lemma 6.1 Let k 6 (F with ^Sk > 0 and k ^ i{n/2 + 2Z). Let Xo.Xi ^d X2 be
cutoff functions on S^, n > 2, where \o and \^ have compact support, and ^i
is identically one in a neighbourhood of 9X. Assume that the cutoff functions are
analytic to order 2p, where p = max{n, [Sfc]}, ([1] denotes the integer part of I ) that
is,

|^X| < C{Cp^^ (57)
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for all multiindices a with \a\ < 2p. Let K(y,z;k) be an integral kernel satisfying
the bounds

\D^K(y^;k)\ < ICWIQ/)-2^-"-!0! (58)

fory e supp(^i), z e supp(^) and\a\ < 2n+2. Letq be an integer with q+Qk-p ^
0. The singular values of ̂ (k^o^XiK^ satisfy the bound

^(CoWxoA^i^,) < C
^zk-q+n/2)

F(-ik+q) W^1^)
^{k)^

j1/"/ '
(59)

It follows from this estimate, and Weyl's convexity theorem relating eigenvalues
to singular values (cf. [25]), that we can prove an exponential bound on F(z) away
from the real axis.
Sketch of the Proof. Let Ap denote the Laplacian with Dirichlet boundary
conditions on some ball containing the support of ^o. Then

^(Xo^'XiK^) = ^W^oXo^XiK^)
^ ^(A^IIA^oA^i^H
^ C^r^llA^oA^^II. (60)

The constants depend only on the diameter of the support of ^o. We must now
bound the norm on the right of (60). We write

||A^oA^i^2|| < llA^oA^-^?/)-2^-2^!)!^)2^2^^^^!!. (61)

To bound the second term on the right in (61), we commute A9 past ^-i giving two
terms. The first one is {y^^^^^K^. The assumptions on the integral kernel
for K imply that this first operator has an integral kernel that is Hilbert Schmidt,
and hence satisfies the bound, IK^^XiA'^ll < CCi{k). The second term
arising from the commutation is (y)2^+2<^ ̂ ]K^. Since the derivatives of ̂
have compact support, the norm of this term is bounded by CC^k}. Combining
the preceding two estimates yields IK^^^A^i^ll < CCi(k). Now we estimate
the first term on the right of (61). For k ^ i{n/2 + Z} the operator whose norm we
must bound has integral kernel

(A^oA^-^)-2^-2-?)^)

= C•22^^(A)ASxo(a')|^-l/|-2^fc+2^-"(</)-2Q<;-^, (62)

where g{k) = F(ik -q+ n/2) F{-ik +q)-1. This kernel has to be analysed carefully
near and away from the diagonal. The off-diagonal piece is easily seen to be Hilbert
Schmidt. It is in the analysis of the kernel near the diagonal the we use the partial
analyticity of the cut-off functions. D
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