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On the current of large atoms
in strong magnetic fields

Seren FOURNAIS

Abstract

In this talk I will discuss recent results on the magnetisation/current of
large atoms in strong magnetic fields. It is known from the work of Lieb,
Solovej and Yngvason [LSY94] that the energy and density of atoms in strong
magnetic fields are given to highest order by a Magnetic Thomas Fermi the-
ory (MTF-theory) when the magnetic field strength B and nuclear charge
Z satisfy BZ~3 — 0. It is, however, equally interesting to establish whether
MTF-theory also gives the right asymptotic current. In this talk we will prove
that this is indeed the case, at least for moderate magnetic fields. However,
we will also prove that approximate ground states do not in general give the
right asymptotics for the current.

1. Introduction

Let us consider a large neutral atom with nuclear charge Z in a strong magnetic
field B = B (0,0,1). In a quantum mechanical description the dynamics of the atom
is governed by the (Pauli-) Hamiltonian:

z

H(B,Vz) =) {(—zvj + A(z;))* + B(z,) - 6 + vz(xj)} + Y Ea—
j=1 1<j<k<z 7 k

Here A(z) = B/2(—2®,z1,0), Vz(z) = —l_ﬁ and & is the vector of Pauli spin

matrices. The unbounded, self-adjoint operator H acts on the Hilbert space H =

AZL?(R3; C?). We have applied the convention that a suffix on a one particle oper-

ator means that the corresponding operator acts on the j’th electron i.e.
A1 ®@ - RPz=010- - QAP; ® - ® dz.

We will be interested in obtaining approximations for the energy, density and
current of the atom in the case where B, Z are large i.e. we will let B, Z tend to
infinity.

Part of the work presented in this article was done during the author’s stay at the ESI in Vienna, fall 1999. He
wishes to express his gratitude to Thomas and Maria Hoffmann-Ostenhof for giving him the opportunity to go
there, and to Thomas stergaard Serensen for many discussions on this subject.
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1.1. Basic notions

The (ground state) energy of the atom is defined by the variational principle:

E(B,Vz) =, _inf _(V|H(B,Vz)|¥)

From the work of [AHS] it is known that the ground state energy is actually
an eigenvalue, so we can let ¥y denote a (not necessarily unique) ground state of
H(B,Vz).

The density p of the atom is defined as the distribution 2£ i.e.

d -
@mﬂaw+m:/mm,

for all ¢ € C$°(R®). By the variational principle it is easy to see that, if the derivative
exists, we get: :

or

z
/p¢dx = (\I’0|Z¢($J‘)[‘I’0>,

p(z) = Z/I\Ilo(x,mQ,--~ ,2z)|2dzy - - dz .

Here we used the symmetry properties of the space H.

In the same way the current 7 is defined as the distribution 5—% ie. for all
@ € CP(R3; R?) we have

Rl

d ] -
Et-lt:OE(N’ Z, B + tcurld) = / a-jdz,

if the derivative on the left hand side exists. Using again the variational principle
we get:

j/ G- jdu,= (Uo|Jz(B,d)| ),
‘RS

if the derivative exists, where

J=1

—

J2(B.@) = Y () - (=19, + BA(;)) + (1Y, + BA(z)) - d(z;)) + 75 - B(zy)) .

Here b = curld is the magnetic field generated by a.

Remark 1.1. Notice that even if the ground state is degenerate the above formulas
hold for any ground state wave function ¥

We may define the current for all @ € C§°(R?,R?®) by

/ i jdr = (VolJz(B.ad)|¥,).
R3
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Since the energy does not depend on the choice of @ - only on the magnetic field
generated by @ (gauge invariance) - we may write the derivative as

ﬁltzoE(N,Z,§+t5)=/ b- M dz,
dt o

where M by definition is the magnetisation. It is easy to see (by integration by
parts) that curlM = j.

1.2. Magnetic Thomas-Fermi theory

It is known from the work of Lieb, Solovej and Yngvason that the energy of the

atom can be approximated by a functional of the density alone. Let us introduce a
bit of notation:

el B.V) = | o) da + [ Vi@)ola) s+ Do),

where D( f 9) = 3 [ flz)le — y| 'g(y) dzdy, 78(t) = sup,s,[tw — Pp(w)], and
Py(w) = £ (v¥? +2 55, 2vB - w|*?)

The functional should be seen as giving the (MTF-) energy £yrr as a function
of the density p. The three terms in the functional represent the kinetic energy! ,

the direct potential energy and the electronic repulsion, respectively.
We define the MTF-energy as the minimum of the above functional:

Eyrr(B,V) = inf Evrrlo; B, V),
pECB-‘V

where the domain Cj, is given by:

Csy = {p|p>0/p Z/TB(I ))dz < 0o, D(p, p) < oo}.

It can be proved, that there is a unique minimizing density pa;rr of the functional.

The MTF-theory is meant as a simpler, approximate theory of large atoms, and
indeed we find:

Theorem 1.2 ([LSY94] Convergence of the energy). Let V(z) = ZI7 v(z/l)
where v € L2 4+ L*®, v(z) — 0 as |z| — oo and where | = Z71/3(1 + B)~%/5, with
B = B/Z*3. Then
E(B,V)
- = —'> 1’
Eyrr(B,V)

as B,Z — oo with B/Z* — 0.

Remark 1.3. By astudy of the scaling behaviour of £y, we get that both energies
have the following order :

E(B,Vz) ~ 2731 + 8)*°,

'In Thomas-Fermi theory without magnetic fields, the kinetic energy 7(p) is taken as 7(p) =
5/3
CTFpP™"".
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Remark 1.4. The result above has been generalised to nonconstant magnetic fields
by [ES97].

By a variational argument (see below) the convergence of the energy gives im-
mediately the convergence of the density.

Theorem 1.5 (Convergence of the density [LSY94]). Let p be the minimizer
of Emrr and define pg(x) by p(x) = ZI3ps(x/l). Let p? be the quantum mechanical

density. If Z — oo, B/Z%® — 0 and B/Z*3 — 3, 0 < 8 < oo, then
Z7(1+ B/Z**) 5 p%(z /1) — pg,

5/3
loc *

weakly in L

One would now naturally suppose that MTF-theory also gives the right current.
Notice that it is quite easy to calculate the MTF-current:

Lemma 1.6. o Let @ € CP(R®) and write b = curld, then the map t —
Eyrr(N, B +tb, V) is differentiable at t = 0.

o Let the distribution fMTp be defined as

s d —
/jMTF a= Eglc:oE(N, B + tcurld, V),

then

- . 5 [ B-curld 3
/]MTF Ta = 5/—35‘—[73@) + gpvéff] dr,

where p is the unique minimizer of Eyrr, and Vesr =V + px ||~ + po is the
effective potential.

It will indeed turn out, that we can prove the following theorem:

Theorem 1.7 (Convergence of the current [Fou0Oa]). Let @, = (a!V,a®,0)
in CP(R®,R®), and define @(x) = ldo(x/l), where | = Z7Y3(1 + B/Z*/3)72/5. Let
us assume that BZ=43 < C for some constant C € R, . Suppose finally that ¥ is a
ground state for H(B,Vy), then

— d - -
<\I/’J2(B C_l')|\p> = Elt:OEMTF(B + tcurl&, ‘Z) + O(Z7/3),
as Z — o0.
In the rest of this paper we will discuss why it is correct, though maybe a little
surprising that MTF-theory gives the right current of the atom.
Let us first discuss why MTF-theory might not give the right current. In order
to do that let us look a bit at the proof that MTF-theory gives the right density:
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1.3. The convergence argument for the density

We immediately get, by using ¥, in the variational principle for £ (E ,Vz + to)
and E(B,V), the following inequality:

Z
E(B,Vz +t¢) — E(B,Vz) < (¥4t Y _ é(z;)| %),
j=1

where ¥, is a ground state for H(é, Vz). If we know that E(E, Vz +td) =

EMTF(E, Vz +to) + o(EMTF(g, Vz + td)), then we can let Z, B tend to infinity
in the above inequality, then divide by ¢ and let ¢ tend to zero. Thereby we get?®:

z
d S -
(P z o(z5)|Wo) = ;ﬁlt:OEMTF(B, Vz +14) + o( Emrr(B,Vz)).
j=1

The derivative on the right does exist and gives exactly the MTF-density.
Unfortunately, the above argument does not work for the current as the following
calculation shows:
Let us define
H(t) = H(B,Vy) + tJz(B, Ba),

in order to try the plan of attack above. But now,
z
H(t) = H(B + tBcutld, V) — B** Y _a*(z;),
J=1

and E(B + tBcurld, Vz) ~ E(B, Vz) but
VA

(WlB Y E )0 = £B [ p@)d (@) do

j=1
~ BX’E(B,Vy),

where a =~ b means that a, b have the same order of magnitude in Z, B.
Therefore, this second term, which is of second order in ¢ and thus vanishes upon
taking ¢ to zero, is of too high order in the parameters B, Z and spoils the picture.
The above only shows that the method of proof for the density does not carry
over directly to the case of the current. Worse is that we can in fact show that
“approximate ground states” do not necessarily give the right current i.e. it is
possible to construct sequences of functions ¥z g such that

(V7 5|/H(B,V2)|928) = Exrr(B,Vz) + o(E(B, Vz)),

but
(U 5lJz(B, Bd)|Vz) # Jure(B, Vz) + o E(B, V7).
This is in sharp contrast to the case of the density, where all approximate ground
states give the right density to highest order.
In the next section (Section 2) we will give a semiclassical example of what can
go wrong with approximate ground states. Then in Section 3 we will explain the
main ingredient of the proof of Theorem 1.7.

2We get two inequalities since ¢ can take both positive and negative values.
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2. A density matrix with too high current

In order to illustrate that the current can, in fact, be orders of magnitude too big,

let us go to a semiclassical picture. For simplicity, let us look at a two-dimensional
situation:

H = (—ihV + pA(z))? — ph+ V(z),

acting on L2(R?). We suppose A = 1/2(—z2,21), uh = 1 and let b — 0. This
describes a non-interacting electron gas in the external magnetic field of strength
and electric potential V. The energy of the gas is

E(h,u,V) = tr[lf{l(—oo;o](}-{)]

= _%/% ([V]_+22[2V+V]—) dx+0(%)

v=1

= T Ea(V) +o(u/h).

The density is given by

[pods = wl1 (]

i pd
def %ahzoEsd(v +td) + o(u/h),

and the current by
[ - witds = g (B,

where
J(ud) = pi - (—ihV + pA(z)) + (—ihV + pA(z)) - p@ — ph(ds,a2 — Or,a1).

In order to simplify some expressions we will write gy = (—thV + /u_f(:c))
We want to prove that it is necessary to use something like our commutator
argument below (see Section 4) in order to calculate the current. Therefore we will

produce an example of a density matrix v that gives the right energy to highest
order - but gives a current of too high order.

Lemma 2.1. There ezists a potential V(z) € C(R?) and a test function ¢ =

(1, ¢2) € CP(R?) together with a density matriz i.e. an operator v satisfying
0 <~ <1 such that

B4 ol
tr[Hy] = hEscl(L )+ o(h),
and

Sl (o]l -

as h — 0.
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Thus the lemma says that a density matrix that gives the right energy does not
necessarily give the right current. This is unlike the situation for the density, since
it is easy to prove that a density matrix that gives the right energy also gives the
right density.

The key to the construction is the following: The current operator - as opposed
to the energy operator (the Hamiltonian) - mixes the Landau levels. In fact, the
main part of the current operator does not respect the Landau levels - the part
that does is much smaller®. Thus, a density matrix that gives the right energy but
contains a small part which mixes neighboring Landau levels should have too large
a current. As the proof below shows this turns out to be the case.

Proof. We will construct our density matrix as a small perturbation of a density
matrix which respects the Landau levels and gives the right energy.
Let us choose V € C§°(R?), which satisfies [V(z)]- = 10 for all z € B(0,2) (=

{y € R?||y| < 2}). We will choose a test vector & = (¢1, ¢2), which is supported in
B(0,1).
The density matrix ' which gives the correct energy is:

! % 1
v :Z%/M(V, w)I(v, u) du,
v=1

where M (v, u) is the characteristic function of the set (in {N, U {0}) x R2)
(v, u) 2ph + V(u) < 0},

and where II(v, u) is an operator with kernel

(v, u)(z,y) = g:(z — WP (z,y)g-(y — u).

In this last expression g, is a localisation function g.(z) = r~lg(z/r), 0 < g €

C(R?), [¢> =1 and r = h'~* for some 0 < a < 1. Furthermore, [1)(z, y) is the
integral kernel of the projection to the v-th Landau level:

U _12

_ H
on Y )

,u ,
H,(f)(x, y) = 27k eXP{l(xlyz — ZTolr) 2h

H 2
7 Ly,(|x -yl

where L, are Laguerre polynomials normalised by L,(0) = 1.
We will not prove here that 7' gives the right energy to highest order. This will
follow from calculations similar to those below (or see [LSY94]).

Let now M be the characteristic function of B(0,1),, and write

¥y = e/]([(u)fl(u) du,

where € — 0 as h — 0 and where

I(u)(z,y) = g-(z — u)P(x,y)g,(y — u).

3This can be seen explicitly from the commutator formula in Section 4.
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In this final expression P is the operator
P=1Pe 1l + 1 ant?

witha =pgz, —ipz,,a" = ps, +ip;z, being the raising and lowering operators that
define the Landau levels.

We finally define v = 7' 4+ 4. Since the operator P satisfies (remember ph = 1)
—c(I;” + ) < P < e(15” + 1Y),

it is easy to see that 0 < v for sufficiently small €. In order to get v < 1 we should
multiply by a factor ; + 135> Where 6 — 0 as h — 0. We will not do this, since it will
not affect order of magnitude estimates and only obscure notation.

We need to calculate

tr[Hy] = = FEsq + tr[HY] + o(u/h),

and .

tr[h’VIJp((b)fY],
with Jp(q{_;) =¢- Pi+Di- ¢. Notice that since ~ gives the right density to highest
order, we do not need to calculate the spin current i.e. tr[uh(0z, ¢2 — 9z,61)7], since
we know this to be of order £ once we have proved that y gives the right energy.
Furthermore, we may assume that 7' does not satisfy the requirements of Lemma

2.1 - if it does we do not have to construct anything.
The energy: Using linearity, we write,

tr[H9] = e/]VI(u)tr[HfI(u)]du,
and then we use the AMS-localisation formula:
29p%9 — (P%9° + 9°p%) = [l9, %), 9]-
Let us first look at the potential energy:
tr[VII(u)] = tr[g?(- — u)VP).

This is small (i.e o(p)) since H§2)f1'182) is small for f € C§° (see Lemma 2.2 below).
For the kinetic energy term we get:

t1”[( 2 — ph)TI(u)]
= ~tr ((p%02( — u) + (- — w)p’; — 2uh)P + 2([g: (- — w),p%], 9: (- — w)|P)

= 1 (2uhg, —u)P + 2h*(Vg, (- _u))QP)

This term is small for the same reason as above. Thus we may choose € to go to
zero slowly with h - for definiteness let us take € = |logh|™!.
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The current:
In order to calculate the current we write

-, —

te[J(6)3] = 2Rer[§(—ihV + pA)d),
so we only need to consider
tr[§(—ihV + pA)4]
_ / M (w)tr(—ihV + pA)(0)) du
= [ S uld-irTa.( — ) Por(- ~ )l du

+e / M (u)tr@g, (- — u)(=ihV + pd)Pg,(- — u)] du

Since HS.Z) f Hff) is small when j # k, f € C§°, we get that the highest order contri-
bution comes from a part of the second term, namely:

[ttt i LTEN ) Pot - u)au

~ e/M(u)tr[gz(- — u) {5( Z‘;’; ) e + 5( _’jzh ) H‘{"’}] du.

If we remember that uh = 1 and choose ¢, = 0 we can calculate the trace as:
e [ M) - wr(o) (1 (@,3) + 1P (0,2)) did

- m/M 02(z — u)y () drdu

) 27Th /|u|<l/ rg*((z - w)/r)é(z) dedu

No—— x)dz.

v o
If we remember that this term has to be multiplied by h™! it is easy to see that we
have reached our aim. O

Lemma 2.2. Let ¢ € C°(R?), then

I lllswe) < CoVA/HlIVOlloc,

where the norm of the operator on the left is the operator norm as a bounded operator
in L2

Proof. We use Schur’s Lemma i.e. the following bound on the norm of an integral
kernel:

| K (z,y)|lpr2) < max sup/}h x,y)|dy, sup/|K y)| dz).
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The integral kernel K (z,y) of [H§-2), P is

() = 1P (2,)(60) - () = 1P o.0) [ (W—1) - Vola+ty — ) dt.

So we estimate:
[ K@y < V6l [ 100l - vldy
= | V8lleov/A/R / 2 (2, )| v/l — o] dy.

Now we use the fact that |H§2) (z,y)| = f(\/1/h(z — y)), where f has exponential
decay, to bound the last integral uniformly in z. It is easy to see that the above
estimate works equally well for sup, [ |K(z,y)|dz. O

3. Why jyrr =~ j 3 3
The first positive indication that jyrr =~ j comes from the following calculation:
Let us look at E((1 + t)B, V) and differentiate at ¢ = 0 (this corresponds to
putting @ = A in the current operator). Now,

zZ .
H(Q+t)B,Vz) = (1+1) (Z(-—lvjhl(\/l+txj))2+1§(xj)-a*j>

Tt
z 1
P Vi Y
=1 1<j<k<z 173 T Tk

By changing variables to y; = /1 + tz;, we get that H((1 + t)B, V) is unitarily
equivalent to the operator:

V4
H(B,V;) = (1+1) (Z(—ivj+ﬁ(xj))2+§(xj)'<fj>

j=1

zZ
+v1+1t (Z VZ($]') + Z l—}—) .

1<j<k<z Ti T 2|
So, we get (if the derivative with respect to ¢ exists):

z
LoB(1+ 0B V7) = (Wl 3 (=i, + Aw,))? + Bla) - 631%0)

j=1

DN RED Dl

: Z;
1<j<k<Z

— . 1 — -
= Egin(B,Vz) + §EPOT(B:‘Z)~, (1)
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where ¥, denotes a ground state wave function, and Exy (resp Epor) denotes the
ground state kinetic (resp potential) energy*.

Remark 3.1. Notice that this is an identity for normal, finite-size atoms. There
are no limits involved.

Remark 3.2. This identity has a striking similarity with the wvirial theorem for
atoms without magnetic fields. In fact, the identity can be understood as a virial

theorem for atoms in constant magnetic fields. Upon taking B = 0, we get the usual
identity

- 1 -
0= Egin(0,Vz) + §EPOT(0a Vz).

As noticed in the remark above, our identity is similar to the so-called virial the-
orem in quantum mechanics. Now, the virial theorem, can be proved by calculating
a certain commutator. Doing this in our case will help us get a useful identity for
other test function @ than the special choice @ = A above:

3.1. Scaling

It will be convenient for us to change to the natural length scale [ of the atom.
Therefore, we perform the following unitary transformation:
Let U; be the unitary operator

(Uld})(‘rlv s ,.TN) = 1_32/271)(!—1331’ cee ,l_l.'lfz),
where | = Z71/3(1 + 8)~%®, 8 = (B/Z*?3). Then

U7 H(B,Vz)U, = ZI" Hy(h, 1)

and )
U Jz(B, Bla(z /1)U, = ZI~ ' Jz(h, p, uad),
where
z 1 1
Hz(h,p) = Z [(hﬁ] + pA(2;))? + hpds — I——|] +2z7! Z Tz —zh]’
j=1 L 1<j<k<z "I k
AZ(hv % a)
Z
= 3 [atas) - (5 + () + (b + pA(2)) - @) + hiosh™ (@)
j=1

Here = —iV, h = 1722712 and pu = BI*/?Z~'/2. Notice that h — 0 iff BZ% —
0. In the rest of the paper W, .q will always denote a ground state of Hz(h, u),
which exists by assumption.

4To my knowledge this identity has not previously appeared in the litterature. Any references
on the subject would be appreciated.
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3.2. Commutator formula

Let us take an @ = (a(,a?,0) € C°(R%), and define @ = (—a®,a,0). We
can now calculate the commutator

[Hz(h, 1), Z - (hp; + pA(z;)) + (hpj +NA(33])) a(z;)],

Jj=1

using the commutator formula from Section 4 below. Thereby we will find, using

that the matrix element of a commutator with H vanishes in any eigenstate of H,
that

<\I/scaled|jZ(hv H, ﬂa)l\pscaled> <lpscaled|JZ(h M, a )l\I’scaled>
where

jZ(h,M,a) =
Z

- Z(hﬁj + uA(z;))(Dalz;) + (Dalz;))") (b + pAl(z;)) — hposh® (z;)

RS (zj — zx) - (a(z;) — a(z))

— 13
1<j<k<Z |25 — k]

Z

Z ( l%l*” h%dwa(z])>

Remark 3.3. If we take a(r) = —1/2(z,, 22, z3) in the above formula, we get (1).

Let us denote the terms on the right jz,KIN(fi),jz,mT(&) and jz,DENs(?I) re-
spectively.

From the convergence of the quantum mechanical density to the MTF-density
(see [LSY94]), we easily get:

Theorem 3.4.

a(z) -z
(\IlscaleleZDENS(h i, a )l\Ilscaled> - Z/%pﬁ(z) dl‘,

as Z — oo. Here pg ts the unique minimizer in scaled MTF-theory.

In order to calculate the other two contributions to the current some more work
is needed, but from here the ideas are the same as those used in [LSY94].

Theorem 3.5. Suppose there exists C < oo such that ph < C, then as h — 0 we
get

<\I/scaled|jZ.K[N(ha M. &) !\pscaled>
3 ~
= =57 [0~ Busa)Pallggl ) o

—Z/(anaz — Opa1)vepppgda + o(Z),

IV-12



and

scaled'JZ INT(h ,U,, )'\I"scaled>

) - (a(z) —a(y))
ps(y) dzdy + o(Z2).
5 [[ o == )
Here pg 1is the unique minimizer in scaled MTF-theory and vepy = —|z|™! + pg *

||~ + v(B), is the effective potential (also from scaled MTF-theory).
Using the results above we finally get:

Theorem 3.6. Let @ = (a(V,a?,0) € CP(R3,R®) and let & = (—a®,aV),0),
b3 = 9,1a® — d,aV). Suppose there ezists C < oo such that uh < C, then as
h — 0 (or equivalently Z — oo)

(‘I’scaledljZ(ha H, a) ‘\Ilscaled>

= 25 [890) (aloa(a)) + os(aluess(@)) ds +o(2)

Here the term on the right hand side is ezxactly the current obtained in scaled MTF
theory.

The term (\Ilsca,edUZ INT(hy i1, @)|Wscatea) can be seen as a new electron-electron

interaction. This makes it look complicated at first sight, but it turns out to be
fairly easy to include it in the MTF-theory and apply the ideas from [LSY94] to
calculate the corresponding current. In order to see that this term can be reduced
to a new term in the density functional theory we need to prove an inequality of
Lieb-Oxford type.
Concerning Jz grn: this operator is a one-particle operator and it is therefore only
necessary to modify the semiclassical analysis in order to calculate the corresponding
current. It is, however, this term which forces us to limit ourselves to the case
ph < C (or B < CZ*/3), for a further discussion of this see [FouOOb]. It will be the
aim of new work to get around this difficulty.

4. Commutator
In this section we will violate slightly the conventions on the notation, since here
we will let A be an arbitrary vector potential and thus B = curl4 will not necessarily
be constant in space. We will be working in a one particle situation instead of the
many-particle problems discussed in the major part of this article.
Let us define
H = (—ihV + pA)? + V' (z),

and write J,(d) = @ - (—thV + pA) + (—ihV + pA) - @ Let furthermore

0 B; —-B;
B = —B3 0 Bl = {al'jAk - ark‘{j}j,k'
B, -B, 0

The range of the matrix B is exactly the vectors orthogonal to B.
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Remark 4.1. Notice that if B = (1,0,0) and @ = (—ay, a;,0), then Ba = (ay, as, 0).

Let us denote by (;) the inner product in R® and by (;) the inner product in
L*(R®). Let us finally write the magnetic momentum operator as p; = (—ihV+uA).
Then we get:

Lemma 4.2. Let us write @ = Ba, then the following formula is true:
[H, Jp(a)] = 2tha-VV — 2ihud,(a)
—2ih(ps; (Da + (Da)')p;) — ih*Adiv(a).
Proof. The proof of Lemma 4.2 is essentially just a calculation. a

Corollary 4.3. Let ¢ be an eigenfunction for H, i.e. Hp = A\@, then

we; J(@)g) = (¢a-VVe)
~(6: (05 ((Da+ (Da))p)9) — h*(65 Adiv(@)9).
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