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Recovering Asymptotics at Infinity of
Perturbations of Stratified Media

T. CHRISTIANSEN M.S. Josm
Abstract

We consider perturbations of a stratified medium R^"1 x Ry, where the
operator studied is c2{x^ ^/)A. The function c is a perturbation of co(^/), which
is constant for sufficiently large \y\ and satisfies some other conditions. Un-
der certain restrictions on the perturbation c, we give results on the Fourier
integral operator structure of the scattering matrix. Moreover, we show that
we can recover the asymptotic expansion at infinity of c from knowledge of Co
and the singularities of the scattering matrix at fixed energy.

1. Introduction
In these lecture notes we describe the problem of recovering a sound speed c

which is a perturbation of a stratified sound speed CQ. That is, Co depends on the
variable y G R but the main operator one studies is c^, where A = — Z^ i -^-2-

and z = {x,y) G R71"1 x R. The wave equation (—^- — c^)v = 0 models the
propagation of acoustic waves in a layered, or stratified, fluid, and replacing Co by
c allows perturbations. Under certain conditions on c and CQ made more precise in
Section 1.1, we show that when co(y) == €4- when \y\ > VM^ then the scattering matrix
for c2/^ is a Fourier integral operator and describe its singular set. Moreover, we
show that the asymptotics of the perturbation can be recovered from the scattering
matrix at fixed energy. We expect to show that very similar results hold when
Co(^) •==- c± for ±y > y^^ and for this reason state intermediate results in the more
general setting.

The inverse result given here is complementary to earlier results ([1. 7, 9. 18]),
which showed that exponentially decaying perturbations can be recovered. Our
results use techniques used by Joshi and Sa Barreto, [10, 11, 12] to study inverse
problems in other settings.

As in those results, the fundamental idea here is to compute the symbol of
the scattering matrix by solving transport equations along geodesies on the sphere
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at infinity. These equations express the propagation of growth at infinity. The
fundamental difference here is that we have to consider the broken geodesic flow
obtained by refraction and reflection at the equator (cf. [15]). This continues a
chain of ideas initiated by Melrose and Zworski in [14] in order to prove that the
scattering matrix on an asymptotically Euclidean manifold is a Fourier integral
operator associated to geodesic flow at time TT.

In this note we only state results and sketch some proofs, the details of which will
appear elsewhere. We also do not attempt here to give our results in the greatest
generality possible.

1.1. Assumptions and notation
Throughout, z = (x,y) € R7'"1 x R.
Both sound speeds c and Co satisfy 0 < Cm < c, CQ < CM < oo. Moreover, co{y)

is piecewise smooth and there exists a finite VM so that co{y) = c± when ±y > y ^ .
We take c+ < c_. Moreover, all derivatives of CQ are bounded except at finitely
many values of y . This allows Co to be piecewise constant, for example.

We require that c — CQ be smooth outside of a compact set. Moreover, we make
requirements on the behaviour of C—CQ at infinity. For any N and for any multiindex
a,

DWz) - CQ(y)) = D^ ff: 7,(-)M-^ + O^l-^l-1), (1)
\j=J l^l /

where 7^ C C00^'1'1). For most of our results, J > 2 will suffice, and we take J to
be at least two throughout.

We study the operators c^A and c2^ acting on ^(R71, c^dz) and ^(R71, c~2dz),
respectively, so that the operators are symmetric and have self-adjoint extensions,
which we denote in the same way.

2. The Spectrum of cjA and the scattering matrix
The spectral and scattering theory of the operators cjA and c2^ have been

widely studied under assumptions much weaker than those we have made here (e.g.
[2, 4, 5, 17, 19] and references). Below we summarize some of the results of other
authors that are most relevant here.

2.1. Fine description of the spectrum
The spectrum of c^ or of cjA is [0, oo). However, in order to study the scatter-

ing theory of these operators, we need to have a better understanding of the nature
of their spectra.

We begin with the operator c^A. Consider a generalized eigenfunction with
eigenvalue A2 of the form e^'^y). Then

^(^+1^12My)=A2^(y).
This leads us to consider the family of one-dimensional differential operators A^ =
c^{D^ + r2) on ^(R.c^dy). It has continuous spectrum beginning at c^r2, of
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multiplicity two if €4- == c- and of multiplicity one on [c\T2, c^r2) and of multiplicity
two on [c^T^oo) if C+ < c-. In either case, the continuous spectrum of A|^|,
taken over ^, means that there is continuous spectrum of cjA which is parametrized
by S^~1 and covers [O.oo). Here S^~1 == {a; = (cJ,a;n) € 571-1 : a;n 7^ O.cc^ ^
A/I — c^./c2.} and S'71"1 is the (n — l)-dimensional unit sphere.

Additionally, Ar may have discrete spectrum:

ArfAy)=>]fAy}'
If this happens, for each fixed r there are only finitely many, simple, eigenvalues:

^(T)<AJ(T)<. . .<A^) (T)<C 2^ 2 .

For r > 0, Aj is an increasing function of r and the number of eigenvalues in-
creases with r. These eigenvalues and eigenfunctions produce guided waves for the
corresponding wave equation [D] — c§A)z; = 0.

Let
Tjo = inf{r > 0 : there are j eigenvalues of Ar}.

The numbers c^rjo are called thresholds - at each threshold, there begins another
"branch" of continuous spectrum of cjA, parametrized by S^2. Let

T(A) = #{c^jo < A2}

be the counting function for the number of thresholds.
As a final piece of notation, let T^(A) have the same sign as A, and be the inverse

function of \j, so that

^(D;+T;(A)V,(y)=A2/,(y). (2)

Notice that for cJ C .S^"2, e^^'^f^y) is a generalized eigenfunction of c^A, with
eigenvalue A2.

Although we have not given a proof, the two groups of generalized eigenfunctions
described above form a full set of generalized eigenfunctions ofc^A - that is, together
they can be used to give the spectral measure of c^A. At energy A2, the generalized
eigenfunctions are parametrized by S^~1 and T(A) copies of 5n-2.

The generalized eigenfunctions ofc^ are quite similar and are parametrized by
the same space. Under the assumptions that we have made, neither c^A nor c^
has any eigenvalues ([4]).

2.2. The scattering matrix
Because of the described parametrization of the continuous spectrum at fixed

energy, the (absolute) scattering matrices Ao(A), A(A) ofcjA and c^ are operators

A(A), Ao(A) : L^^) ©K,<T(A) ^2(5n-2) -> L2^-1) ©K;<T(A) L2^-2).

Here we are using the notation (BK^TW^2^"2) to stand for the direct sum of
T(A) copies of L^-2).
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There are several ways of defining a scattering matrix. One way is via a map
from one set of generalized eigenfunctions to another- for example, from incoming
to outgoing generalized eigenfunctions. In [3] a definition of the scattering matrix
was given in terms of the generalized eigenfunctions. Here, however, it will be more
useful to define the (absolute) scattering matrix using the Poisson operator. We
begin by recalling a simpler example before describing the definition in this case.

Example: Potential Scattering on R/1. On R", let V be a real-valued function
that has an asymptotic expansion at infinity of the form V ~ Z^2 M'^'^/M)-
Then, for A € R, X ̂  0, the Poisson operator P^(A) is the operator defined by

Py(A) : C00^71-1) 3 f ̂  Uy € (1 + M^-^R71)

where uy is determined by

(A + V - X^uy = 0

and
uy = M-("-1)/2 (e^f f-) +e-lx^fl ( z } +0(M-1/

\ \\z\/ \\z\/ /\A) J W
Note that / and /' are functions on S'71"1, which can be thought of as the "sphere
at infinity." The (absolute) scattering matrix A (A) is determined by A (A)/ == /'
and extends by continuity to be a map on L2^71'1).

As perhaps the simplest example of a Poisson operator, if V = 0, then

P(A,z,a;)=Cr(A)e^A^,

as is easily checked using the method of stationary phase. Then A(A) is a constant
(depending on the dimension) times the antipodal map. See [10] for a construction
of the Poisson operator for A + V in this setting and a discussion of the resulting
scattering matrix.

To obtain the relative scattering matrix, which is usually just called the scat-
tering matrix, one composes the absolute scattering matrix with the inverse of the
absolute scattering matrix for the "model" problem. For potential scattering on R71,
then, the relative scattering matrix is, up to a constant, obtained by composing the
absolute scattering matrix with the antipodal map.

We now return to the case of the operator c2^. Note that while in our example
A 4- V approaches a constant-coefficient differential operator when z\ —> oo in any
direction, the same is not true for c2^. The consequences of this can be seen already
in the asymptotic expansion used in defining the Poisson operator and will appear
again in the construction of an approximate Poisson operator outlined in Section
3.1.

The Poisson operator is defined initially as an operator

P(A) : c^{s^} e^ ^(s71-2) -> (i + I^D^U^R").
lfg= (g^g^ ...,^(A)) € ^(^r1)®^^00^-2), then P(\)g = u. (c^-A2^ =
0, and u has asymptotics at infinity of the following type: for any e > 0, as \z\ —> oo
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with ±y > VM, \V\1\A > 6,

u ~ H-(71-1)/2 (e^l/^o (]i|) + e-^l/^o (^)) + o(\z\-^-^2). (3)

Moreover, when \y\ < y^, we have

u - M-^-2)/2 (Eĵ  e l̂̂ .Q/, \)g, (^) + E^ e-^)l^(y, A)^ (^))
_^-zAM/c+^^ ̂  ̂ ^-i)/2^ ^

Here the /j are eigenfunctions of the reduced operator as in (2), and we are assuming
J > 6+n or c, Co satisfy the assumptions of Theorem 3.1 to ensure a nice asymptotic
expansion at infinity. In order to simplify the presentation, we avoid discussing the
asymptotics in the transitional region between the areas \y\ < VM and \y\/\z\ > e >
0, but refer the interested reader to [3, Theorem 4.1] where the problem is treated
for a more specialized case.

We will call the operator A(A) defined by A{\)g = g1 the absolute scattering
matrix. For fixed A, A(A) = (A^-(A)), 0 < ij < T(A). We call Aoo(A) the "main
part" of the scattering matrix; in case the operator Ar has no eigenvalues it is the
entire scattering matrix.

3. Inverse results
The first theorem, on the structure of the scattering matrix, extends some results

of [3], which required c—co to be rapidly decreasing. This theorem holds under more
general conditions than those given here.

Theorem 3.1 Suppose the asumptions of Section 1 . 1 are satisfied, c+ = c-, c,co
are smooth, and J > 2. Then the main part of the scattering matrix is a Fourier
integral operator associated with broken geodesic flow at time TT on 5'n~l.

Here the geodesic flow is broken at ujn = Q\ that is, it is reflected and transmitted
when it hits the region where Co 7^ c+ on the sphere at infinity. This phenomenon
has also been observed in A^-body scattering (e.g. [16]), which has many similarities.

Theorem 3.2 Suppose the assumptions of Section 1 . 1 are satisfied, c+ == c_, C,CQ
are smooth, J > 2 and n > 3. Then the coefficients 7j in the asymptotic expansion
( 1 ) ofc—CQ are determined by Co(y) and the transmitted singularities of the main
part of the scattering matrix at a fixed nonzero energy.

In fact, our proof gives more than this: if two sound speeds Ci. c^ satisfy all the
conditions of the theorem for the same CQ, and the difference of their scattering
operators is of order —j, then c\ — c^ = Od^l"-74'1). We have intermediate and
partial results in the cases c+ < c- and relaxing the smoothness assumptions on CQ
and c, and hope to be able to extend them.

Theorem 3.2 is complementary to results of [1, 7, 9, 18], which concerned expo-
nentially decaying perturbations. Below, we give an outline of the proof. We study
the main part of the scattering matrix by first constructing an approximation of the
(partial) Poisson operator. We use a modification of some results of [6, 13, 15] to
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show that all the singularities of the scattering matrix can be read off from the ap-
proximation of the Poisson operator we construct. Finally, we use some techniques
similar to those of [11] to show that the coefficients in the expansion of c - Co can
be recovered from the singularities of the scattering matrix.

3.1. The approximation to the Poisson operator
In order to study the "main part" of the scattering matrix, we construct an

approximation to P(A)rio, where Ilo(go,g^ ...,^T(A)) = (50,0, ...,0). We use some
techniques developed in [10] as well as some additional techniques adapted to this
situation.

Proposition 3.1 For X e R\{0}, there exists an approximation of P(A)rio, which
we denote Po(A), such that

(c2^ - A2)^) G (1 + IzD-^ir).

Additionally, Po{\)g has an asymptotic expansion at infinity as in (3) and (4), the
expansions used in the definition of the Poisson operator.

We remark that this proposition and the proof we outline hold under considerably
less restrictive conditions than the Theorems given above. For example, it is not
necessary to have C+ == c_, and the smoothness conditions can be relaxed.

We outline the technique for construction of the Schwartz kernel Po(A,z,o;) of
Po(A) when u = (cJ,^), ̂  > 0, u^n ̂  \/1 -^l02-'

We begin with ^o(A,z,cj) = e^-^+^y), where

and

cl{\2\u\2/^+D^y)=\2^(y)

f e^n/c+ + R^e-^^l^ y > y M
(p+ ~ { T^W^-IA^/^ y < -y^

where we take ^/1/c2. - 1/4 + cc;2/c2. to have negative imaginary part if 1/c2. -
l/c^+o^/c^. < 0. Note that for ujn > 0, $o(A,-2,o;) gives the Schwartz kernel of the
Poisson operator composed with IIo for cjA, up to a multiple depending on A and
c±.

Applying c2^ - A2 to <^o, we obtain an error term which has a nice asymptotic
expansion at infinity. We need to remove the error term by adding additional terms
to $o- How we remove the error depends on the region in which we are working.
In each region described below, the error terms are removed by successively adding
terms which result in an error that vanishes one order faster at infinity.

When y > VM, there are two pieces of the error term: one of the form e^A2''*;/c+6.^,
and the other of the form e^^/c+-^n/c+^ ̂ h b+,b. e S^, the classical poly-
homogeneous symbols of order - J . To solve away an error of the form e^^^^+b+j.
b+j e 5ph'g (modulo a term e^-^+^j+i, with 6+,^i e ^g"1) we use

e^-^lzl-^a^/lzl).
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Here a solves a transport equation along geodesies through uj on S71 1, with initial
condition 0 at z/\z\ = c^, just as in [10]. We use this, at infinity, down to y/\z\ = 0.
In this way, for y > VM we can replace the error e^2 '^l^b^. with one of the same
form, but with the symbol vanishing as rapidly as we like at infinity.

When |y| < VM^ we solve away the error terms by solving an ordinary differential
equation with boundary conditions.

A similar technique as that described for the error of the form e^'^l^b in
V > VM is used to solve away the other error in y > VM and the error in y < —yM->
but this time using initial conditions at y/\z\ = 0, which come from the solutions
to the ordinary differential equations in \y\ < y ^ ' For example, the error term
in y > VM of the form e^Aa••a;/c4--^^n/c+^_ j^g removed by adding terms where the
transport equations are solved along geodesies through z/\z\ == (—cJ.o^). However,
the solutions to the transport equations are badly behaved at z/\z\ == (—oJ,^) in
V > VM and at (—cJc-/c+, —^/l - c2.!^!2/^) (if l—c^lcjl2 /^ > 0) in y < —VM-> and
the approximate Poisson operator takes a more complicated form near these points,
of the type described in [10, Section 3]. The structure of the Poisson operator near
these points contributes to the singularities of the scattering matrix.

If these pieces are all put together properly, we get an approximation of the
Poisson operator as described in the Proposition.

3.2. Inversion
We have

P(A)Ho = Po(A) - (c^ - (A - zO)2)-1^^ - A2)^).

In order to fully understand the "main part" of the scattering matrix, it remains to
understand the the asymptotic expansion at infinity of the second term.

In case c-^ = c_, and c, CQ are smooth, then a modification of results of [6, 13, 15]
tells us that the coefficient of the leading order term is smooth away from y /\z\ == 0;
that is, all the singularities of the main part of the scattering matrix come from the
construction of Po(\). This finishes the proof of the first theorem. In other cases,
we have partial results of this type.

For the inverse result, suppose we have two sound speeds c\ and 03 that satisfy all
the requirements placed on c, and we know c\ —c^ ~ 1^j>k M'^^/M)' Then from
the transmitted singularities of the scattering matrix we can recover, for ujn ¥" 0,

rn

T^[\,ujn) / (sms}k~2ak{s,0•^)ds.
Jo

Here the integral is over a geodesic on S71"1 of length TT starting at LJ\ as 0 varies, we
get all such geodesies. The function a^ is a/c written in different coordinates. If c^A
and cjA have the same transmitted singularities of the scattering matrix, this is 0
for all such a;, and the remaining step is to show that this implies a^ == 0. As in [II],
by differentiating with respect to the endpoints, one can reduce this to an inversion
problem for an integral transform with the exponent k - 2 = 0 o r k — 2 = = 1 . If
k = 2, then differentiating again shows that the function is even, and we get that
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the integral over closed geodesies of length 27T is 0. Using a result of Funk (e.g. [8])
on the kernel of the X-ray transform, this shows that dk = 0. A similar technique
handles the case where one reduces to k = 3.

Iterating over A;, Theorem 3.2 follows.
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