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Journees Equations aux derivees partielles
Nantes, 5-9 juin 2000
GDR 1151 (CNRS)

Bilinear estimates related to the KP equations

N. TZVETKOV

Abstract
We survey some recent results for the KP-II equation. We also give an

idea for treating the "bad frequency interactions" of the bilinear estimates in
the Fourier transform restriction spaces related to the KP-I equation.

1. Introduction
The Kadomtsev-Petviashvili (KP) equations occur naturally in many physical

contexts as "universal" models for the propagation of weakly nonlinear dispersive
long waves which are essentially one-directional, with weak transverse effects. The
KP equations are two dimensional extensions of the Korteweg-de Vries (KdV) equa-
tion, which is the first known soliton equation. The soliton structure of the KdV
equation is not broken down by the transverse perturbation and therefore the KP
equations are two dimensional soliton equations. Thus the inverse scattering tech-
nique could be applied to the Cauchy problem associated to the KP equations under
appropriate decay assumptions on the initial data. Our goal here is to study the KP
equations with harmonic analysis techniques developed in the context of KdV and
NLS equations mainly by J. Bourgain, C. E. Kenig, G. Ponce, L. Vega, in order to
obtain local or global well-posedness results for the initial value problem associated
to the KP equations. Consider the Cauchy problem associated to the KP equations

(Ut + u^ + uu^)^ =F Uyy == 0, u(0, x, y) = (f)(x, y). (1)

The initial data (f> is supposed to belong to a low order Sobolev type space and x
and y are on the real line or the circle. The KP-I equation corresponds to sign
- in (1), while the KP-II equation to sign +. The role of the sign is transparent
when considering (1) in the context of water waves. The KP-II equation occurs
when the surface tension is small or absent (Bond number < 1/3). The KP-I
equation corresponds to the case when the surface tension dominates as in very
shallow water (Bond number > 1/3). In the critical case when the Bond number is
near to 1/3 higher order terms should be taken into account in (1) (the fifth order
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KP equations should be considered). There is a big difference between the KP-I
(the focusing case) and KP-II (the defocusing case) equations from mathematical
point of view. When studying the KP models by harmonic analysis techniques
there are satisfactory local or global well-posedness results for the KP-II equation,
obtained in the last years starting from the work of J. Bourgain [2]. Unfortunately
at the present moment the initial value problem for the KP-I equation is not so
well-understood. Here we shall give an idea for the proof of a bilinear estimate in
the Fourier transform restriction spaces associated to the KP-I equation1. Since the
KP models are infinite dimensional integrable Hamiltonian systems there exists an
infinite number of conserved by the time evolution quantities. These conservation
laws may be useful for obtaining global solutions, when they have positively defined
quadratic parts, i.e. a Sobolev type norm is controlled trough the flow. In the case
of the KP-II equation the quadratic part of the conservation laws is not positively
defined and the only "globalizing" conservation law seems to be the L2 norm. On
the other hand the conservation laws for the KP-I equation have "good" signs and
hence one may expect that higher Sobolev norms are controlled through the flow. In
the periodic setting global well-posedness for the KP-I equation using the "good"
signs of the conservation laws is obtained in [19]. In the real case an additional
difficulty appears, since the conservation laws contain anti-derivatives and hence
their justification is not a trivial issue.

Notations. We denote by^or T the Fourier transform and by T~^ the inverse
transform. || • \\LP denotes the norm in the Lebesgue space L30. A ~ B means that
there exists a constant c > 1 such that ^|A| < |J3| < c|A|. A ^ B means that
||A| < |B| < 2|A|. For any positive A and B the notation A ^ B (resp. A ^ B)
means that there exists a positive constant c such that A < cB (resp. A > cB).
The notation a± means a ±e for arbitrary small e > 0. By mes(A) or ]A| we denote
the Lebesgue measure of a set A.

2. The KP-II equation
Consider the Cauchy problem for the KP-II equation

(ut + u^ + uu^}^ + Uyy == 0, u(0, x, y) -= (f>(x, y). (2)

Using energy methods one can obtain local well-posedness results for sufficiently
smooth initial data (f). The regularity assumptions on the data are in order to control
the L°° norm of the solution, which makes the L2 conservation law useless for proving
global well-posedness. Unfortunately most of the local smoothing properties of the
KdV equations are lost when considering transverse effects. For example the sharp
version of the Kato smoothing effect for the linearized KdV equation is used in order
to gain regularity for the KdV equation in [11, 12]. The point is that one controls
the L^°(L^) norm of the gradient of the solution to the linearized KdV equation
by the L^ norm of the initial data. In order to prove this (sharp) version of Kato
smoothing effect one changes the role of the time variable t and the space variable x
in the oscillatory integral representing the solution of the linearized KdV equation.

^ome very recent progress in the context of the KP-I equation is done in [4, 5].
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Then an application of Plancherel identity provides the needed bound. If we try to
use the above argument for the linearized KP equations we should choose one of the
space variables x or y to be changed with the time variable and hence we lose the
symmetry of the estimate.

In [2] local (and hence global) well-posedness of (2) for data in Z/^R2) or L^T2)
is obtained. The proof uses the methods based on analysis of multiple Fourier series,
first introduced in [1] in the context of the NLS and KdV equation. An essential
ingredient is a L2 convolution estimate. This estimate can be regarded as a localized
in the frequency space version of the L4 — L2 Strichartz inequality for the periodic
KP-II equation. The proof is typical for the periodic setting but can be performed
in the continuous case too. When the data is defined on R2 a global version of the
Strichartz inequality for (2) holds (cf. [17] 2). The Strichartz estimates can be easily
injected into the framework of the Fourier transform restriction spaces associated to
the KP-II equation. Combining that estimates with some simple calculus techniques
due to C. E. Kenig, G. Ponce and L. Vega one can obtain local well-posedness results
for (2) with data below L2 (cf. [21]).

Now we introduce the functional spaces where the initial data is expected to
belong. Let H^y82^2) be an anisotropic Sobolev space equipped with the norm

IHk- -IKO51^)52^^)!!^.
The spaces H^82^2) are a natural set for the initial data of (2) since their homo-
geneous versions are invariant under the scale transformations preserving the KP
equations. The pair (^i, s^) is critical i f ^ i +2S2+1/2 = 0, i.e. for 5i +2s^+l/2 = 0
the space H^y82^2) is invariant under the scale transformation which preserves the
KP equations. It seems that similarly to the KdV equation (and other dispersive
models) in the case of the KP-II equation the critical for the local well-posedness
Sobolev exponent differs from the scaling one. We have the following local well-
posedness result.
Theorem 2.1 ( [ 2 1 ] } Let s^ > -1/3 and s^ > 0. Then for any (/) C H^y82^2), such
that Kl"'1^^) € S'(R2) there exist a positive T = r(||(^||^2) (lim^oT(p) = 00}
and a unique solution u(t^ x^ y) of the initial value problem ( 1 ) on the time interval

I = [-T, T] satisfying u € C ( I , H^y82^2)) n Bj^^(/) (cf. ( 3 ) and (4) below for
the definition of the spaces B^2^)).
Actually we solve an integral equation corresponding to (2) for any data (f) G
^^(R2). The condition l^l"1^^) € <?'(R2) is imposed in order to insure that
the solution of the integral equation solves also (2) in distribution sense.

Now we introduce the Fourier transform restriction spaces related to the KP-II
equation with data defined on R2. For 6^1,62^1^2 € R we define B^^2 as a
Bourgain type space associated to the KP-II equation equipped with the norm

/ ^2\b ( (^ - <^3 + !z2)61 \
IHÎ  = V-^^j) ^W52 1+-——^ \u{r^ri} (3)

11 2 \ ^ / \ \^/ / ^2
L2^

2 It seems that similarly to the 2D NLS equation the exact periodic version of the Strichartz
inequality obtained in [17] fails.
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and (.) = (1 + | • l 2 )^ . Let I C R be an interval. Then we define the space B^^I)
equipped with the norm

INL î̂ n = inf , {iHl^i^, w(t) = u(t) on l} . (4)
^51,52 V^ w^R6 '61 '^ I ^51,52 J

"^t^Sl ,52

The proof of Theorem 2.1 relies on the following bilinear estimate.

Theorem 2.2 Let Si > —1/3, 52 > 0. Then the following estimate holds

H^WII -,4-.,44 ^ ll^ll^+.^^ll^llo^^^- (5)
—•si,S2 -"si^ ^-si^

Once we obtain (5) the proof of Theorem 2.1 follows from some general arguments
similarly to other dispersive models (cf. [8]).

Now we give some ideas of the proof of Theorem 2.2. Let C = (^r])^ Ci '==

(^1,771) and a := cr(T,C) = r - ̂  + r ] 2 / ^ o-i :== a(ri,Ci). ^2 '•= ^{r - TI,C - Ci)-
Then Theorem 2.2 can be reformulated in the following way via a duality and a
polarization argument.

Proposition 1 Let s\ > —1/3, s^ > 0 and u, v, w be positive functions in Z/^R3).
Then the following inequality holds

^ K{r, C, Ti, CiN^i. Ci)^(^ - ̂ i. C - CiM^ C) dr^drd^

^MML^ML^ (6)

where

l?l(^)(0"«.)-(?-^>- .̂,
^•^••^= ̂ ^^^ ̂  -.)•••

We can assume ^2 = 0, since for s^ > 0 one has {77}52 ^ (^l)52(77 — ^i)52- There are
two main tools in the proof of (6), the simple calculus argument due to C. E. Kenig,
G. Ponce and L. Vega and the global Strichartz inequality for the KP equations
injected into the framework of the Fourier transform restriction spaces £?^6^62.

The Kenig-Ponce-Vega argument. Denote by J the left-hand side of (6). Then
using twice the Cauchy-Schwarz inequality we obtain

r r r l1/2 f r ^1/2
J ^ \ K^dr^ \ i. y KTI,CI)^ - Ti,C - COI îriCi) } w(r,C)dTdC

^ ||^||^(^^)ll^|l^|h||L->||w||^.

Hence the difficulty is to prove ||^|Loc/jr;2 \ < oo. There is a canonical way toT ^ ' ' ' ' iCi7

integrate K with respect to T\ (the simple calculus inequalities). The integration
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with respect to 6 can be done by using the change of variables 6 ̂  o\ + 0-2. The
integration with respect to 7;i is the additional difficulty for the KP equations.

The Strichartz inequalities. The following form of the Strichartz inequality for
the KP-II equation holds

HIL4 ̂  IHI ^-,,0,0?•
'0,0°n n

or equivalently

I.F-1^)-^)!!^^) ̂  IHILW. (7)

One can obtain If (2 < p < 4) versions of (7) by interpolation with the Plancherel
identity. Note that J can be written in the form J = J^i^C)^ ^U3){r^)drd(^.
Using Plancherel identity and Holder inequality we obtain

3^nii^"^)^j=i
where — + — + — = 1. In the favorable cases Uj have the form

^ = (a)-^ U2 = ̂ i)"^, U3 = {a^v

and an application of the V version of (7) completes the proof.
The smoothing relation. In order to compensate the loss of a derivative in

the nonlinear term we use the relation (cf. [2])

-——^-^ti^
and hence

max{|a| Jai| Ja2|}>|^(C-6)1. (8)

Here we essentially use the KP-II nature. A bad sign in the corresponding relation
in the KP-I case is the main obstruction to perform the argument for the KP-I
equation. There are three main cases to be considered taking into account which
terms dominates in the left-hand side of (8). By symmetry arguments we can
assume that |<7i| > |a2|. The case when |cr| dominates is easier due to an additional
smoothing coming from some Jacobian matrixes when performing the Kenig-Ponce-
Vega argument. There are two reasons to introduce the extra factor in the definition
of the Fourier transform restriction spaces B^^2 : 1. The small frequency cases.
2. The cases when |o-i| dominates in (8).

The small frequency cases. Let M < 1 and K > 1 be dyadic. The small
frequency cases consist of bounding the contributions to J to the following sets

[ K MA " = (^Ci^C) : 16 ^M
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Denote by J1^1^ the contribution of A^ to J . Then by using the Strichartz in-
equalities we can obtain the estimate

JKM ̂  M^11^^211^11^11^1^ 61 >0-62> °-
On the other hand the Kenig-Ponce-Vega argument can provide the following bound
for J^

JKM ̂  M^-|HHH|^||w||^2, S, > 0, ^2 > 0.

A suitable interpolation completes the proof.
Counterexample. The result of Theorem 2.2 seems to be optimal when fixing

52=0.

Theorem 2.3 ( [ 2 1 ] ) The estimate

|[^(^)|| 6-1,61,62 ^ H ^ l l o^l.&2 11^11^1.62 (9)
— S l , 0 51,0 51,0

fails for s\ < —1/3.

In order to prove Theorem 2.3 we choose the functions u^ v and w in (6) as charac-
teristic functions of suitable sets in R3. There are two main steps : 1. The necessity
for b + &i > 2/3. 2. The necessity for 5i > b + &i — 1. In the first step the sections
of the needed sets with the planes {rj = const} are essentially the sets used in [11]
in the KdV case. In the second step we need a different construction. In the next
table we compare the sets needed in the KdV and in the KP case (note that the set
W is not symmetric with respect to the origin in the KP-II case).

KdV KP-II
There exist A, B, W C R^
such that : |A| - |B| ~ \W\ - A^-1/2.
For (r, ̂ ) on the support of A U B
one has : |r - ̂ \ ̂  1, |<^| ~ N.
For (r, ̂ ) on the support of W one
has: I T - ^ I ^ N 3 / 2 , |^| - N - 1 / 2 .
In addition XA^XB^ N-^^xw-

There exist A, B, W C R^
such that : |A| - \B\ - \W\ ~ 1.
For (r, ^) on the support of A U B
one has: [ r - ^ + f l ^ l , |C[ ~ N.
For (r, ^) on the support of W one
has: [ r - ^ + f l ^ A ^ |^|~1.
In addition XA^XB^XW-_____

Global well-posedness below L2. In [3] J. Bourgain developed a new method
to prove global well-posedness for nonlinear evolution equations when the conserva-
tion laws are not directly available. The method was recently applied in different
contexts (cf [6, 7, 9, 10, 14, 16, 20, 23]). In [23] we prove that the Cauchy problem
for the KP-II equation is globally well-posed for data in ^^(R2), 5i > -1/310,
52 > 0. The method of [23] is further developed in [9] where the restriction on 5i
is removed to s^ > -1/64 (cf. also [20] where global well-posedness for the KP-II
equation is shown with initial data belonging to a homogeneous Sobolev space of
negative index with respect x).

The KP-II equation with data on RxT. In [22] we study the KP-II equation
when the data is defined on R x T. We observe that better versions of the crucial
convolution estimate hold comparing to the purely periodic case. In particular we
prove the local well-posedness of the KP-II equation with data below L^R x T).
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3. The KP-I equation
Consider the Fourier transform restriction spaces -^^(R3) associated to the

KP-I equation, equipped with the norm

u\\^ = HW^W2 (i + (^(O-62) s(r,^)| ̂
r^,T)

where 0 := ^(T^^) =T+^+7?2 /^ 0i :=0(n^i, 771)^2 :=^(T-TI^-^,7?-771).
Unfortunately in the case of the KP-I equation the relation for the symbol

e, + e, - 0= -3^ - ̂ i) + (^"^l)2 (10)^i^-^i)
does not yield an inequality of type (8) because of the "bad signs" in the right-hand
side of (10). Our goal here is to show that a bilinear estimate in the Bourgain spaces
associated to the KP-I equation holds despite the "bad signs" in the relation (10).
More precisely we have the following inequality.

Theorem 3.1 ( [ 1 5 ] ) Let s^ > 1/2, s^ > 0. Then the following inequality holds

\\\D^(uv)\\ ^^ ^ IHI^^.ill^ll^^,i. (11)
"l'^ 5^,32 ^5^,63

Note that we choose bi = ̂  and 63 = ^ in (11) similarly to [23] but in fact there
is a large range for the parameters &i and 62 such that (11) holds. Consider the
following region in E6^^ (recall that < = (^,77), Ci = (^i ,m))

0 - j^ (- ^ (• \ . g(^ - W ^ |o. .(. ^,^ l^-^l)2!R-{w^ • '^(C^OI^I'^-^^iM^^J-
The region ('r,C,Ti,Ci) i R can be handled similarly to [21, 23] in the case of the
KP-II equation since for (r, C, TI, Ci) ^ R one has

max{|0|,|^|,|^|}^|^-^)|

and therefore one can perform arguments similar to the KP-II case.
The region (r,^, ri,Ci) £ R. Using a duality argument we can rewrite the esti-

mate (11) in the following form

y K(r, C, ri, CiMn, Ci)u(T - TI, C - CiMr, C)riridCidTdC

;SIHMM|^|H|^, (12)
where u, v, w are positive and

l^(tt)(0-tf.)-"(^>-
^(^C^i,Ci) = ———-——-————.————7——. , , \"———.

{0^--{0^{6^ (^-} /-M^\ W2^ - ̂ 2

\ (?i)5 / \<S-$i)5 /
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For S2 > 0, we have (r/)52 ^ W2^ - 771)^ and hence we can assume 53 = 0
hereafter. We also assume |^| > 1 since when |̂ | < 1 one can bound the kernel
•^('^Ci^Ci) by (^i)"5"^)"5" and the Strichartz inequality approach described
in the previous section is available (note that the same Strichartz inequalities hold
in both KP-I or KP-II cases). Denote by J the contribution of R to the left-hand
side of (12). Consider the dyadic levels in R6 -

^KS = {(^C,n,Ci) : {0}^K, {6,}^K^ (02)^2,

|̂ | wM, (6)^ Mi, ^-^}^M^},

where K,K^ K^ Mi, Ma, M are the dyadic integers. Denote by J^^ the con-
tribution of £®^ n R to J . Then

/ < V^ jK,Ki,K^
~ / ^ "M,MI,M:~ / ^ "M,Mi,M2-

A',A'i,/C2,M,Mi,M2

Let

, . , "(n,Ci), when (0,} ̂  Ki, <^ i )^Mi
^7<iMi(Tl,Cl) = <j

[ 0, elsewhere.

Similarly we define VK^M^T - T"I,C - Ci) and WKM{T~,C,) to be localized v{r -
T'I^ - Ci) and ^''"iC) respectively to the regions {(^2) ^ •R'2, (^ - 6) % •̂ '2} and
{{0} w K, |^| % M > 1}. We are not going to use the additional factor in the def-
inition of the Fourier transform restriction spaces associated to the KP-I equation
when estimating Jj^'j^. Note that

and hence

7^^ < M^MY'M^M^ r
^M.M^Mz ~ ————————TT——T-——— / ^KiMi(7-l,Cl)^2M2^ -^C- ^}^KM[r,Q,

K^K^K^ J

where the integration is on D^^ n R. It remains to bound the expression

y ^lAfi^cO^A^ - ̂ C - Ci)^KA^(^C)-

Applying Cauchy-Schwarz inequality in (ri.Ci), using the support properties of
^j<iMi, ^2A/2 and another use of the Cauchy-Schwarz inequality in (r,C) yield

rK^K, < A/^^A^51^51

JM\M^M2 ^ ——————y^——j——— SUp |A7-^|2|[u^^J|^2|[2;^^J|^2||w^A/||^2, (13)
K^K^K^ (r^M^)
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where A^ C R3 is defined as follows

A^ = {(n^i^i) : (n ,^ i ,m)e suppu^iMi,
0"-Ti^-^i,??-?7i) e supp u^Ma, (7-,^?7,Ti,^i,m) e -R}

={(n,^l) : (6>»Mi, <^ -6 )^M2, (^i)^^i, (02)^^2,

(•^^Tl^l,?7l) € J?}.

We first eliminate 7-1. Using that for (7-1, ̂ i, 771) 6 Ar^ one has (0i) ft; Jfi, (^2) w K^,
we obtain via the triangle inequality

mes(A^) ̂  min{JCi, 7^2}mes(B^), (14)

where B ,̂, C R2 is the following set

Br^ = {(^1^1) : (^i)^Mi, ( ^ -^ )^M2, |0i+^|^max{A:i,jC2},

g(^-^i)2 iy./. ,., i (ei^-^i)2-.
^TTTTc——F^T ^ l0^^ - W\ > ?,77T77——T^f-16^-^)1

We have that for (r, C, TI, Ci) € J?

-2|^(e-^i)|

r\

.-(^+02)977i
^11 - ̂ t]\
^1(^-6)

|^| ~M~ r ^-/ (15)

since for (r, C» T'I) Ci) € -R one has

(^-Cm)2

1^1(^-^1)1
13^1(^-^)1.

The measure of the projection of the set Br^n on the ^i axis is bounded by min{Mi,
M-i}, since for (^i,?7i) € B^r, one has (^i) ?a Mi and (^ - ̂ i) « ^2. Fix now ^i.
Then the measure of 771 such that (^1,771) 6 Br^j, is bounded by

max^i,^} ^ max{7<i,7<2}

inf ^i+02) M

since for (^i, 771) e Br^ one has |^i +^2! ,$ max{JCi, ^2}. Hence we obtain that that
the maximum of the measures of the sections of Br^n with lines parallel to the 771
axis is bounded by A/"1 max{J<i, K^} (the factor A/"1 gives the smoothing effect).
Hence

max{jCi, K^} min{Afi, M^}
mes(B^) ^

M (16)

Using (14) and (16) we arrive at

^i^2mm{A/i,A/2}
HlV^-i^ri) ^ ,,

XIX-9
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By the triangle inequality we have that M ^ max{Mi,M2}. Using a symmetry
argument we can suppose that Mi >_ M^ and therefore M ̂  Mi. Let Mi = 2lM,
where / € Z, / > -IQ (IQ is fixed, positive and independent of M). Then substituting
(17) in (13) we obtain

JM^M^ ^ —————- -————I———^K^M^L^K^M^L^WKM^L^ ' (18)
K^K^K^M^ 2(2ls^

It remains to sum (18) over K, K^ K^, M, M^, 1. Since s^ > 1/2 we can easily sum
(18)over^Xi,^M2

E ^SA&S ̂  ^II^MlMMMI^MllL^
K.K^K^Ml

where z^MO^Ci) and WM(^C) are localized n(ri,Ci) and w(r,C) respectively to
the regions {(^i) ^ 2^V/} and {|^| ^ M > 1}. Next we sum over M and I via the
Cauchy-Schwarz inequality

7 < V^ jK,K^K2
~ / ^ C'M,2ZM,M2

J<,7<i,7<2,A^2,M^

i f 1 1/2 f 1 1/2
1/2 , . 1/2

E^ Eiî Mii2^ En îii- IHÎ- 2.2^ 2.ll^Mlll2> o
^ I M J I M

i^ Ell̂ lli2 IHI^2
^ I M J I M J

^ ||^||^|b||L2||w||^.

Finally we note that if we prove an analogue of Theorem 3.1, with a gain of one
derivative then one could expect to obtain finite energy solutions for the KP-I equa-
tion (finite energy solutions for the fifth order KP-I equations are obtained in [18]).
However, since the energy density for the KP-I equation contains anti-derivatives,
in order to obtain the local well-posedness in the energy space, some additional
bilinear estimates would be needed.
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