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Absolute continuity of the spectrum of periodic
operators of mathematical physics

Tatiana SUSLINA

Abstract

The lecture is devoted to the problem of absolute continuity of the spec-
trum of periodic operators. A general approach to this problem was suggested
by L. Thomas in 1973 for the case of the Schrédinger operator with periodic
electric potential. Further application of his method to concrete operators of
mathematical physics met analytic difficulties. In recent years several new
problems in this area have been solved. We propose a survey of known results
in this area, including very recent, and formulate unsolved problems.

1. Introduction

The problem of the absolute continuity of the periodic operators of mathematical
physics has been intensively studied in recent years. We propose a survey of the
known results and unsolved problems in this area. This is a revised version of
surveys [BSu4,5], which includes the most recent results.

1.1. The Floquet decomposition. We study periodic differential operators in
Ly(R?), d > 2. Let P(x,D) be a linear formally selfadjoint differential expression,
x € R¢, D = —iV. Suppose that P is periodic in x with a lattice of periods I
Differential expression P(x, D) generates an operator P in L,(R?). Assume that P
is selfadjoint. By (2 we denote the elementary cell of the lattice I'. The elementary
cell of the dual lattice is denoted by Q. We use notation H*(R?), H*(Q), s € R, for
the Sobolev classes. Symbol || - || stands for the norm of function in L,(£2) or the
norm of bounded operator in Ly((2).

As usual, we use the Flogquet decomposition for periodic operators. Introduce a
family of operators P(k) in Ly(f2). Operator P(k) is defined by expression P(x, D+
k) on a set of functions satisfying periodic boundary conditions. Parameter k € R?
is called quasimomentum. Operator P (k) is selfadjoint in Ly(2). Assume that P(k)
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has compact resolvent which depends on k continuously (in operator norm). We use
the so called Gelfand transform

U: Ly(R%) = Ly(Q x Q) = /GBLQ(Q) dk.
Q
First U is defined on the Schwartz class S(R?) by the formula

(UF)(x;k) = (mesQ) /Y " e f(x +m), feSRY).

nel

Then U is extended by continuity to a unitary operator. Operator P is unitarily
equivalent to the direct integral of operators P(k)

UPU™! = / ®P(k) dk.

Q

Operator P(k) has discrete spectrum. By Ej(k), j € Z, we denote eigenvalues
of P(k), numbered in increasing order counting multiplicity. Functions E;(-) are
continuous. The spectrum of P has a band structure. It consists of intervals of the
real axis (bands). Each band is the range of the corresponding band function E;(-).
The intervals lying between bands (if they exist) are called gaps. Bands can overlap.

1.2. The problem of absence of degenerate bands. General arguments do
not imply the absence of spectral bands which degenerate into points. These points
represent eigenvalues of infinite multiplicity of P. This possibility can be realized, for
example, for a periodic elliptic operator of fourth order; the corresponding example
can be found in [K1]. However, for periodic operators of mathematical physics, in
particular, for periodic elliptic second order operators, the absence of degenerate
bands is the most plausible conjecture. It turns out that if there are no degenerate
bands, then the spectrum of the periodic operator is absolutely continuous. (Then
we say that the operator itself is absolutely continuous.) The absence of degenerate
bands is equivalent to the absence of constant band functions.

The proof of the absence of degenerate bands is a subtle technical problem. The
main objects of study are the following: the Schrodinger operator (with periodic
magnetic and electric potentials A, V and periodic metric g)

H(g,A,V) = (D - A(x))"g(x)(D — A(x)) + V(x); (1.1)

the Dirac operator (see (4.4)), the Maxwell operator (see (5.2)), the operator of elas-
ticity theory, the problems for periodic waveguides. It is important for applications
to consider the operators with discontinuous coefficients. However, even in smooth
situations there are many unsolved problems. Each new case requires invention of
new specific technical tricks.

1.3. The Thomas approach. For the first time, the absence of degenerate
bands for the periodic operator

H=-A+1(x) | (1.2)
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in Lo(R®) with V' € Ly(Q) was established in the famous paper [T] by L. Thomas.
Thomas suggested a general approach which was later used in all the papers devoted
to the absolute continuity of periodic operators. Let us explain the Thomas approach
taking the operator (1.2) in R%, d > 2, as an example, and assuming for simplicity
that T = Z4.

The operator family H (k) in L,(f2) is defined by expression H (k) = (D + k)% +
V(x) on functions in H%(Q) satisfying periodic boundary conditions. Thomas used
the analytic extension in the quasimomentum k. The family H(k) is polynomial
in k € C%, the resolvent of H(k) is compact. This allows us to apply analytic
perturbation theory and the analytic Fredholm alternative. We fix k,,...,k; € R
and put k&; = m + iy, y € R Then the family H(k) = H(y) depends on one
parameter y. Thomas proved that H(y) is invertible for sufficiently large |y| and

lim [[H(y) ™| = 0. (13)
lyl—o0

The relation (1.3) directly implies the absence of degenerate bands. Indeed, suppose
that some band function is constant, i.e. FE;(k) = E = const. Then, by the
analytic Fredholm alternative, the number E is an eigenvalue of the operator H(y)
for all y € R Let u = u(y) be an eigenfunction with ||u|| = 1. Then we have
u = EH(y) 'u. The norm of the left-hand side is equal to 1, whereas, by (1.3), the
norm of the right-hand side tends to 0 as |y| — oo. We arrive at a contradiction
which proves the absence of degenerate bands.

Thus, the problem is reduced to the proof of the relation (1.3). To prove such a
relation for particular periodic operators is a difficult technical problem. However,
it is easy for the operator (1.2) with V € L. We start with the "unperturbed”
operator Hy = —A and consider the corresponding operator family Ho(y) in Ly(€2).
Write down the Fourier series for a periodic function v(x):

v(x) — (27r)—d/2 Z ,[)ne27rinx'

nezd

The operator Hy(y) turns into multiplication of the Fourier coefficients o, by the
symbol:

Ho(y)v(x) = (2m)7%* Y " hn(y)0ae™™™,

neZd
ha(y) = 270y + )2 + (2mng + ko)2 + ...+ (27ng + ka)? — 9y + 2miy(2ny + 1).

The real part of the symbol h,(y) is degenerate for some values of n and y. However,
the imaginary part of the symbol is nondegenerate. The symbol satisfies the estimate
[ha(y)| > ¢(1 + |y|). This leads to the estimate for the inverse operator

[Ho(y) ' <C(1+yl)™", yeR, C=c (1.4)

The next step is to add V' (x). When V € L, this can be done by the elementary
estimate

H (y)ull = [[Ho(y)ull = [[Vull = e(t + yDl[ull = [V lloollull = g(l + lyDllu|
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valid for |y| > yo = 2C||V||co- Thus,

IH(y) I <2000+ [y~ lyl > w, (1.5)

which implies (1.3). When potential gets worse it takes more efforts to prove (1.5),
nevertheless V' can be taken into account as an additive perturbation.

More detailed expositions (slightly different from each other) of the Thomas
approach can be found, for example, in [RSi], [K1], [BSu4].

For the periodic magnetic Schrédinger operator (D — A(x))? + V(x) the per-
turbation is of first order and for the corresponding operator depending on y the
perturbation contains the term O(|y|). This is why (see [HemHer]) the magnetic
operator cannot be treated as an additive perturbation of the "free” operator Hj.
This difficulty was overcome in [BSul] in twodimensional case. The magnetic oper-
ator was treated as a "multiplicative” perturbation of H (see Sec. 2 for details).

In the case d > 3 the problem was much more difficult. It was solved by A. Sobolev
[So1].

In Section 2 we discuss results for the periodic Schrédinger operator (1.1) in more
details. Section 3 is devoted to the Schrodinger operator with delta-like potential

supported by a periodic graph. In Section 4 we discuss results for the periodic Dirac
operator, in Section 5 — for the periodic Maxwell operator.

2. Absolute continuity of the periodic Schrodinger operator

2.1. Notation. The standard inner product in C¢ is denoted by (-, -). Integrals
without indication of the integration domain are over R¢. We recall the definition
of the classes Ly (§2) of the Lorentz scale. For a measurable function f we put

pr(t) =mes{x € Q:|f(x)|>t}, t>0.

The class L, (£2), 0 < p < 0o, consists of all functions f such that
1l = sp t(p(0) < c0. 1)

The class L, »(€2) is complete with respect to the quasinorm (2.1) and it is non-
separable. We single out the separable subspace Lgm(ﬂ) formed by the functions
f € Lp(S2) such that ps(t) = o(t™?) as t — oo.

2.2. Definition of the Schrodinger operator. Now we give the precise
definition of the operator (1.1). We fix an orthonormal basis ey, ..., e, in R?. Let
g(x) = {¢'(%)}, 5,0 = 1,...,d, A(x) = A;(x)e; + ... + Ag(x)eq and V(x) be
I-periodic functions in R¢ such that ¢/, A; and V are real-valued and

9(x) >0, g+g7" € Lo(9), (2.2)
AcL(Q), r>2, d=2, AeLi (), d>3, (2.3)
VeL(Q), p>1, d=2; VeLy,, (), d>3. (2.4)
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Under the conditions (2.2)—(2.4) the operator (1.1) cannot be defined directly by
the differential expression. We use the definition via the quadratic form

hu] = hg, A, V)[u] = / ((g(D = A)u, (D — A)u) + V]ul) dx, ue H'(RY). (2.5)

Under conditions (2.2)—(2.4) the form (2.5) is semibounded from below and closed.
The selfadjoint operator H = H(g, A, V) in Ly(R?), generated by this form, is, by
definition, treated as the Schrodinger operator (1.1).

2.3. Conjecture. The following conjecture was formulated in [BSu4].

Conjecture 2.1 Let g%', A;, V be real T-periodic functions. Under conditions (2.2)-
(2.4) the operator H(g,A,V) generated by the form (2.5) is absolutely continuous.

Conditions of Conjecture 2.1 on A and V are optimal in the Lorentz scale. In
its full generality, Conjecture 2.1 has not yet been justified. The validity of it was
proved in a number of particular cases described below.

2.4. Known results. Below a stands for a constant positive (d X d)-matriz.

We start with the case of a constant metric g(x) = a and with the "nonmagnetic”
case A(x) = 0.

Theorem 2.2 Let g(x) = a and let V(x) be a real I'-periodic function satisfying
(2.4). Then the operator H(a,0,V) is absolutely continuous.

Comments. 1) For d = 3 and V' € L,(2) the absolute continuity of the periodic
operator —A + V(x) was proved by L. Thomas [T].

2) The result of [T] was extended to arbitrary d > 2 in [RSi]. For d = 2, 3 it was
assumed that V € Ly(Q2). Ford >4,V € Ly(2), s >d — 1.

3) In [BSu4] the absolute continuity of the operator H(a,0,V) was justified under
condition (2.4) for d = 2, 3, 4. However, for d > 5 more restrictive condition
Ve Ly () was imposed.

4) In [Sh2] the absolute continuity of H(a,0, V') was proved under assumption (2.4)
for all d > 3. Earlier in [Sh1] the same result was obtained for V' € Lg/2().

5) In [Sh3] the absolute continuity of H(a,0,V’) was proved under condition slightly
less restrictive than (2.4), formulated in terms of Fefferman-Phong classes.

Remark 2.3 Without selfadjointness assumption the Thomas estimate implies the
absence of eigenvalues (see [K'1]). In particular, the Schridinger operator —A +
V(x) with complez-valued periodic V' and the Schrodinger operator —A1 4+ V(x) in
Lo(R4, C*) with matriz-valued periodic potential V have no eigenvalues.

We see that for a constant metric and in "nonmagnetic” case the assumptions
of Theorem 2.2 on potential V(x) coincide with the assumptions of Conjecture 2.1.

Now let the metric be still constant, g(x) = a, but A(x) # 0. For a constant
matrix g = a, without loss of generality, the magnetic potential A can be subject
to the additional gauge conditions

divaA =0, /A(x) dx = 0. (2.6)
Q
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Theorem 2.4 Let g(x) = a and let V(x) and A;j(x) be real T'-periodic functions
such that

VeL,(Q), p>1;, AeL(Q), r>2, d=2; (2.7)
VeLyyeQ), d=3,4 VeLi, (Q), d>5; (2.8)
Ac HQ), 25s>3d—2, d>3. (2.9)

Let A satisfy (2.6). Then the operator H(a, A,V) is absolutely continuous.

Comments. 1) In [HemHer| the absolute continuity of the magnetic Hamiltonian
was proved for small A € C!. The difficulties arising without this assumption were
analysed.

2) In [BSul] it was proved that H(a, A, V) is absolutely continuous for d =2, A €
C(Q), V € Ly(Q2). Let us briefly explain the approach of [BSul] in the case when
a=1and A € C'. Consider the Pauli operator P = (D — A(x))? + 0,4, — 0,A,.
By the gauge conditions, there exists a real-valued periodic function ¢(x) such that
Vo = {As, —A;}. The Pauli operator admits a factorization of the form

P = G_W(Dl + Z.DQ)CQW(Dl — iDg)e”“’.

This factorization is very convenient since each factor is either differential operator
with constant coefficients or multiplication by a positive function. This allows us
to treat the corresponding operator P(y) as a multiplicative perturbation of the free
operator Hy(y) and to prove an analogue of the estimate (1.4) for P(y)~!. After
that we can take V' into account as an additive perturbation.

3) Conditions on potentials A and V for d = 2 were relaxed to (2.7) in [BSu2].

4) For d > 3 there is no convenient factorization for the Pauli operator. The problem
was much more difficult. The absolute continuity of H(a, A, V') was established by
A. Sobolev [Sol] for A € C%+3(Q), V € Ly_1(). Later the condition on A was
relaxed to (2.9) [So2]. A. Sobolev used pseudodifferential operators on torus. Above
(for H=—A +V and for the magnetic operator in twodimensional case) we could
choose an arbitrary direction (in I') of complex quasimomentum. It turned out that
for d > 3 and A # 0 we cannot take this direction arbitrarily. Nevertheless, for a
given A there exists an appropriate direction of the quasimomentum such that an
analogue of the estimate (1.5) holds.

5) In [KL] considerations of A. Sobolev were included in a more general framework.
As in [So2], the condition on A was relaxed to (2.9). The absence of eigenvalues for
the operator H(a, A, V) with complex periodic potentials was established.

6) The conditions on V'(x) were relaxed to (2.8) in [BSud]. It is not known if the
conditions on V' can be relaxed to (2.4) for d > 5.

Thus, in the case of a constant metric the absolute continuity of the operator
H(a,A,V) is established. For d = 2 this is done under the natural assumptions
(2.7). For d > 3 this is done for sufficiently smooth magnetic potential A(x), and
the order of smoothness is a linear function of d.

The most difficult thing is to remove the requirement that the metric should be
constant. There are only two cases when the problem is solved. The first case is the
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case of a ”scalar” metric, d > 2. Let g(x) = w?(x)a, where a is a positive constant
matrix and w(x) is a [-periodic real-valued function such that

0<wy <w(x)<w <oo, x€R (2.10)

The following generalization of Theorems 2.2, 2.4 to the case of a ”scalar” metric
was established in [BSu4].

Theorem 2.5 Under assumptions of Theorem 2.2 (respectively, Theorem 2.4), let
w(x) be a I'-periodic function subject to (2.10). Let V,,(x) := divaVw(x) satisfy the
same assumptions as V(x), i.e. (2.4) (respectively, (2.7), (2.8)). Then the operator
H(w?a,0,V) (respectively, H(w?a, A, V)) is absolutely continuous.

The proof of Theorem 2.5 is based on the simple relation
H(w%a,A,V) =wH(a, A,w 2V + w'V,)w (2.11)

between the operator with the metric w?a and the operator with the constant metric
a but another electric potential.

The second important case is the twodimensional case. The absolute continuity
of H(g,A,V) for d = 2 was established by A. Morame [M1].

Theorem 2.6 Let d =2, ¢?'(x), A;(x) and V(x) be real, T'-periodic functions such
that

g(x) = {g"'(x)} > 0, g€ CO(R?), (2.12)
A € C®(R?), V € Lo(R?). (2.13)

Then the operator H(g, A, V) is absolutely continuous.

The technique of [M1] is very involved. The approach is based on a study of
the Pauli operator with a metric. The method of [M1] does not give the standard
estimate of the form (1.5), the main elements of the Thomas scheme are used in
[M1] in a slightly different way. In [M1] it was assumed that detg = 1. We can
easily remove this requirement using the analogue of relation (2.11).

Comment. P. Kuchment [K2] recently communicated to the author that in the
case d = 2 the global isothermal coordinates exist. Then the proof of Theorem 2.6
can be significantly simplified. By an appropriate change of variables the periodic
operator H(g, A,V) can be reduced to the periodic operator with a scalar metric
and, generally speaking, another lattice of periods. This allows us to apply Theorem
2.5. At the same time conditions on g, A and V" are much wider than (2.12), (2.13).

When d > 3 and metric is of general form the problem of the absolute continuity
of H(g,A,V) is open.

XVIII-7



3. The Schrodinger operator with delta-like potential sup-
ported by a periodic graph
3.1. The most recent result [BSuSht] concerns the absolute continuity of the

Schrodinger operator —A + dg(x) in Lo(R?) with delta-like potential supported by
a periodic system of curves ¥. We study more general operator

Hy = (D — A(x))*w?(x)a(D — A(x)) + V(x) + 0(x)5(x). (3.1)

Assume that A;, V and w are real I'-periodic functions satisfying conditions (2.7)
and (2.10) and also the condition

Vo =divaVw € L,(Q2), p> 1. (3.2)

The ”graph” X is periodic: x € ¥ = x+ne€ X nel, and

N
Sa=2nQ=|Jv, veC? (3.3)

i=1

where ; is a simple smooth (of C? class) curve. There are no restrictions on the
value of angles at points of intersection of the curves ;; graph X can be disconnected.
Finally, o(x) is a I'-periodic real-valued function on ¥ such that

o€ L,(Sa), p> 1. (3.4)

Consider the quadratic form in L,(R?)
hs(u] = /(w2(x)(a(D —A)u, (D — A)u) + V(x)|ul?) dx + /E o(x)|ul®ds(x), (3.5)

u € H'(R?). Under the above assumptions the form (3.5) is semibounded from
below and closed. It generates a selfadjoint operator Hy, which formally corresponds
to the expression (3.1).

Theorem 3.1 Let A;, V, w be real-valued and U'-periodic functions in R? satisfying
conditions (2.7), (2.10), (3.2). Let ¥ be a I'-periodic system of curves satisfying
(3.3). Let o be a I'-periodic real-valued function on ¥ satisfying (3.4). Then the
operator Hs, generated by the form (3.5) is absolutely continuous.

A similar result was recently obtained by the same authors in the case d = 3
when ¥ is a periodic system of surfaces.

3.2. Theorem 3.1 implies the absolute continuity of another selfadjoint operator
which acts in Ly(X) — the ”Dirichlet-to-Neumann” operator A. This result has
application to the physics of photonic crystals (see [K3]). For simplicity, first we
assume that ¥ is connected and divides R? into similar bounded domains Q;, j € N,
For a given function ¢ € Lo(X) we look for solution of the Dirichlet problem in each
domain Q;: Au; = 0 (in ©;), ujlen, = p. Let g%}%(x), x € 09;, be the derivative
of u; with respect to the external normal to 0Q;. We put ¥(x) = Zj %%(x); P(x)
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is defined in smooth points of ¥. The operator A : ¢ +— v is called Dirichlet-to-
Neumann operator. The precise definition of the operator A in the case of arbitrary
periodic graph ¥ satisfying (3.3) can be given in terms of quadratic form. In [K3]
P. Kuchment conjectured that A has absolutely continuous spectrum. Now this
conjecture is justified in [BSuSht]: absolute continuity of the operator —A + 65 (x)
implies absolute continuity of A.

4. The periodic Dirac operator

Let oy, -, a4+ be the Dirac matrices, i. e. the Hermitian (M x M)-matrices,
M = 2¢"1 which satisfy the relations ajor+ogo = 26531, j,l=1,...,d+1, where
1 is the unit matrix. Let V(x), Vp(x), A;(x) be real-valued I'-periodic functions.
We assume that

AcL.(Q), WeL.(Q), VelL(Q), r>2, d=2, (4.1)
Vo, VeCRY), d>3. (4.2)
The magnetic potential is required to satisfy the gauge conditions
divA =0, / A(x)dx = 0. (4.3)
Q
Under the assumptions (2.9), (4.1), (4.2) the Dirac operator
d
D(A, Vo, V) ==Y (D — A;j(x)ay + Vo(X)agr + V(X)1, d > 2, (4.4)
j=1

is selfadjoint in Lo(R%) on the domain H!(R¢). Here V(x) is an electric potential;
A(x) is a magnetic potential; usually V5 = m = Const, where m is the mass of a
particle, but it is more convenient to consider more general case.

The first result on the absolute continuity of the periodic Dirac operator was
obtained by L. Danilov [D1] in the case d > 3, A = 0, V, = m. The main result of
[D1] concerns the case V € C(R¢). In [D2] the assumptions on V' (x) were relaxed,
but still A = 0. The case A # 0 is much more difficult.

In [BSu3] the following theorem was proved.

Theorem 4.1 Let A;, V, Vj be real-valued T'-periodic functions satisfying (2.9),
(4.1) — (4.3). Then the Dirac operator (4.4) is absolutely continuous.

The approach of [BSu3] is based on relation between the square of the Dirac
operator and the magnetic Schrodinger operator.

Independently L. Danilov [D3] obtained the same result in the case d = 2.
Recently L. Danilov [D4] communicated to the author that the condition (2.9) in
Theorem 4.1 can be replaced by the assumption

AcC'RYNHL(RY), 2¢>d-2, d>3,

’

or by the assumption that d > 3, A € C! and the Fourier series for A is absolutely
convergent.
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5. The periodic Maxwell operator

Let £(x), pu(x) be positively definite (3 x 3)-matrices with real-valued entries
which are I'-periodic in x € R3. Assume that

g0l <e(x) <e1l, pol < pu(x) < ml, e, €1, po, 1 > 0. (5.1)
The selfadjoint Maxwell operator M acts in the Hilbert space
H = {(u,v) € Loy(R*,C*¢) ® Lo(R*, C3; o) : diveu =0, divuw = 0}.

The operator M is given by the formula

0 ie~'rot
M = <—iu_1r0t 0 ) , DomM = {(u,v) € H : rotu € Ly, rotv € Ly}.
(5.2)

Conjecture 5.1 Let ¢(x), pu(x) be I'-periodic (3 x 3)-matrices with real-valued en-
tries satisfying (5.1). Then the Mazwell operator M is absolutely continuous.

Conjecture 5.1 was justified only in ”isotropic” case when e(x) and p(x) are
positive functions (not matrices).

Theorem 5.2 Let e(x) and pu(x) be positive periodic functions such thate, pu € C2.
Then the Mazwell operator M is absolutely continuous.

Comments. 1) In the case €, u € C* the absolute continuity of M was proved in
[M2]. A. Morame found the useful relation (see (5.10), (5.11)) for the square of M.
2) The proof of [M2] can be simplified. At the same time conditions on € and u can
be relaxed to €, u € C?%. Below we give a simple proof of Theorem 5.2.

Proof of Theorem 5.2. As usual, it is convenient to use an extension of the
Maxwell operator. The extended selfadjoint operator M acts in the Hilbert space

9= Ly(R3,C¥e)® Ly(R?) @ Ly(R?, C3; ) @ Lo(R?)

on the domain DomM = {(u,a,v,8) € H : diveu € Ly, divpr € Ly, rotu €
Ly, rotv € Lo}. The operator M is given by the formula

M(u, a, v, B) = {—=iV B+ ie 'rotv, —idivuv, —iVa — ip"'rotu, —idiveu}.

The subspace H reduces M. The part of M in H is M. It is sufficient to prove that
the operator M is absolutely continuous. Since M is elliptic, it is sufficient [K1] to
show that there are no eigenvalues. Assume that E is an eigenvalue of M:

—iV B+ ie 'rotv = Eu, (5.3)
—idivuy = Ea, (5.4)
—iVa — iy 'rotu = Ev, (5.5)
idiveu = EB. (5.6)
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Applying dive to (5.3) and taking (5.6) into account, we have: —diveVJ3 = E?4.
Since the operator —diveV is absolutely continuous, then § = 0. Similarly, by (5.4),
(5.5), @ = 0. Applying rot to (5.3) and (5.5), we obtain

rote 'rotv = E?uv, divuw =0, (5.7)
rot p ' rotu = E%cu, diveu =0, (5.8
rotv = —iFeu, rotu = iEuv. (5.9)

We use the following relations found in [M2]:
rotu 'rotu = —p e V2 A(eV?u) + (eV(ep)!) x rotu+ V(x)u, diveu =0, (5.10)

rote 'rotv = —e 7 uY2A (UM 20) 4+ (uV (ep) Y) X roto + V (x)v, divpw =0, (5.11)

where V (x) and V (x) are (3 x 3)-matrices expressed in terms of ¢ and y and their

derivatives up to second order. Introduce notation ® = /2y, ¥ = p'/2y. From
(5.7)—(5.11) we have

—A® ~ 2%E(V(ep)'?) x ¥ + pV (%)@ — E%p® = 0 }

—AV + 2E(V(ep)'/?) x & + eV (x)¥ — E?ep¥ =0 (5.12)

The system (5.12) can be rewritten as the Schrédinger equation for a pair U =
{®,¥}: —AU + V(x)U = 0, with an appropriate periodic matrix-valued potential
V(x). Mention that V(x) is a nonsymmetric matrix. We arrive at a contradiction
since the Schrodinger operator has no eigenvalues (see Remark 2.3). o

In the above argument (in contrast to [M2]) we did not use the Floquet decom-
position and the Thomas scheme explicitly.
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