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Journees Equations aux derivees partielles
Nantes, 5-9 juin 2000
GDR 1151 (CNRS)

On the Bethe-Sommerfeld conjecture

Leonid PARNOVSKI Alexander V. SOBOLEV

Abstract
We consider the operator in It^, d >, 2, of the form H = (-A^ + V.I > 0

with a function V periodic with respect to a lattice in K^. We prove that the
number of gaps in the spectrum of H is finite if 81 > d + 3. Previously the
finiteness of the number of gaps was known for 4/ > d-j-1. Various approaches
to this problem are discussed.

1. Introduction
Under very broad conditions, spectra of elliptic differential operators with peri-

odic coefficients have a band structure, i.e. they consist of a union of closed intervals
called bands, possibly separated by spectrum-free intervals called gaps (see [19] and
[12]). It was conjectured by H. Bethe and A. Sommerfeld in the 30's that the num-
ber of gaps in the spectrum of the Schrodinger operator — A + V with a periodic
electric potential V in dimension three must be finite. In the present paper we shall
address the issue of finiteness for the more general operator in Z/^R^):

H = Ho + V, Ho = (-A)^ I > 0, (1.1)

and general dimensions d > 2. Here V is a multiplication by a bounded real-valued
function, which is periodic with respect to a lattice I\

Due to its physical relevance, the case of the Schrodinger operator, i.e. I = 1,
has been studied better than the general one. It is known that the number of gaps
is generically infinite if d = 1 (see [19]). For d > 2 there are at least three different
approaches which lead in one way or another to the justification of the conjecture.
For the first time it was rigorously proved in [18] by V.N.Popov and M. Skriganov
in the case d = 2. Then M. Skriganov (see [21] and references therein) obtained
a proof for all dimensions d > 3 for rational lattices F. For d = 3 the result was
extended to arbitrary F in [22]. A slightly simpler proof in the case d == 2 was given
in [2]. Skriganov's approach presents a combination of number-theoretic ideas and
analytic tools and was designed specifically to address this issue.

MSC 2000 : 35J10, 35P15, 35P20
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The other two methods are indirect in the sense that the finiteness of the number
of gaps in both of them is inferred from other spectral properties of the operator
in question, the study of which presents a separate difficult problem. The first of
these "indirect" approaches is based on the high energy asymptotics of the Bloch
eigenvalues. It was first applied by 0. Veliev (see [23]) to prove the validity of the
Bethe-Sommerfeld conjecture for d = 3. Another proof can be found in the book [9]
by Yu. Karpeshina to which we refer for a comprehensive account of this approach
and further bibliography. We point out that in [9] the conjecture was proved for a
wide class of singular potentials, including Coulomb potentials.

The third method was developed by B. Helffer and A. Mohamed in [6]. Using
microlocal machinery, they derived a suitable two-term asymptotic formula for the
integrated density of states of the operator H at large energies, which implied the
validity of the Bethe-Sommerfeld conjecture for d = 2,3, 4. Notice that this is the
paper where the result for d = 4 is obtained without any restrictions on the lattice
for the first time.

The case of arbitrary I was studies in much less detail. The first result is due
to M. Skriganov (see [20], [21]), who showed that the number of gaps is finite if
21 > d, d >_ 3. Later the polyharmonic operator was studied by Yu. Karpeshina in
[8] (see also [9] and references therein) in the framework of the analytic perturbation
theory. The high energy asymptotics of the Bloch eigenvalues found in [8] implied
the Bethe-Sommerfeld conjecture for 4Z > d+1, d > 2. Under the same restriction on
I , d the number of gaps was announced to be finite in the note [24] by N.N.Yakovlev
(see also [25]) for operators of the form Po + V with an elliptic pseudo-differential
operator Po with constant coefficient and a convex homogeneous symbol of order 21.
However, we have not been able to reproduce Yakovlev's proof in full.

The aim of the present paper is to present a new result in this direction which
states that the Bethe-Sommerfeld conjecture holds for the operator (1.1) if 81 >
d + 3, d > 2. For the Schrodinger case I = 1 the latter condition is equivalent to
the requirement that d = 2, 3 or 4. These are exactly the dimensions for which the
conjecture was justified in the papers cited above. At the same time, our approach is
based on the elementary perturbation theoretic argument, and it is simpler. Besides,
it treats all admissible dimensions d and orders / in a unified fashion. The complete
proof of this result can be found in [16], [17]. Here we intend to describe the main
steps of the proof with an emphasis on its pivotal points.

The finiteness of the number of gaps is a legitimate question for other periodic
operators as well, but the list of relevant results is very short. For the Schrodinger
operator with a periodic magnetic potential the Bethe-Sommerfeld conjecture was
justified by A. Mohamed (see [15]) in the case d = 2. E.L. Green (see [5]) constructed
an example of the Laplace-Beltrami operator with a periodic metric having arbitrar-
ily many gaps in the spectrum. The scarcity of available information demonsrates
that the study of subtle spectral characteristics of periodic operators is a technically
challenging problem, which calls for development of new methods. In connection
with this one should remember that even the "standard" case -A + V has not yet
been studied in full. One of the questions which still remain open, is the validity of
the conjecture for irrational lattices in dimensions d > 5.
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2. Results and discussion

2.1. Definitions and Main Theorems
Using a linear non-degenerate change of variables, we can transform the operator

(1.1) to the form

H = HQ + V, Ho = H^ = (DGD)1.

Here D = -zV, G is a positive definite constant d x d-matrix with real-valued en-
tries, and V is a multiplication by a bounded real-valued function, which is periodic
with respect to the lattice F = (2^)^. Let

0 = [0, 27^, (^ =[0,1)^

be the fundamental domains of the lattice r and the dual lattice 1̂  = Z^ respec-
tively.

To introduce necessary characteristics of the spectrum we need to describe the
Floquet decomposition for the operator H. Identify the space L2^) with the direct
integral

Q= f ^dk, ^=1/2(0),
Jo+

using the unitary Gelfand transform U : L2(Rd) -> (S:

(^)(x,k) = e-^ Y^ e-^^x^^Trm), x € 0,k € Ql.
mez^

Then

UHU" = f H(k)dk,
Jo+

H{k) = ̂ o(k) + V, ^o (k )=(D+k)G(D+k) .

The operators H(k) are defined on the common domain H21^) and have compact
resolvents. Therefore their spectra are purely discrete, and, by a simple pertur-
bation theory argument, their eigenvalues Aj(k) (arranged in increasing order) are
continuous functions of k C T^. The spectrum of the initial opetator H can be now
represented as the union

a{H)=[j^ £,= U_A,(k),
3 keoT

where the closed intervals ^ are called spectral bands. Define two quantitative
characteristics of overlapping of the bands:

• multiplicity of overlapping, which measures the number of bands covering
given point A:

m ( A ) = # { j : A € ^ }j j ?
and
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• Overlapping function, which shows how far the bands penetrate into each
other:

^ fmaxj max{< : [A - t, X + t] C ^}, A € a(^),
C(^) = \^ \ia{H).

Both these functions were first introduced by M. Skriganov (see [21]). The quantities
m(A) and C(A) can be linked with the counting function

N(\)=N(X^H(k))=#{j:\,{k)<\}

of the operator H(\n):

fm(A) > maxk A^(A; H{k)) - mink 7V(A; ̂ (k)),
(2 1)

[ C(A) = sup{t : mink N(\ + t; H{k)) < maxk ^V(A - t; ̂ (k))}.

Now we are in a position to state the main results:

Theorem 2.1 ([16]). Let V be a bounded function and 4:1 > d +1. Then there
exists a number \i = \i(V^ d) such that

m(A) > cjA^-5, C(A) > cgX1-^-6 (2.2)

for all A ^ AO, where

. . fo, r i^ l (mod4);6 = Sd = < -r \ h ^ ̂
l arbitrary positive number, d = l(mod4).

Clearly, either of the estimates (2.2) implies that there are no gaps in the spec-
trum starting from the point Ao, i.e. that the Bethe-Sommerfeld conjecture holds.

Note that the conditions of Theorem 2.1 can be relaxed to allow any periodic
bounded self-adjoint perturbation V, not necessarily multiplication by a function.
In this case we call V periodic if it commutes with shifts by vectors of the lattice.
Also, the theorem remains true if4^ = d+1, d ̂  l(mod4), and |[V|| is small enough.
We do not provide the full statement for the sake of brevity (see [16] for details).
If the condition M > d + 1 is not satisfied, one can construct examples of non-local
perturbations V for which the number of gaps is infinite (see Subsect. 2.3).

If the perturbation is smooth, then the condition 4:1 > d +1 can be generalized
to Sl > d+3:

Theorem 2.2 ([17]). Let V € C^TQ and 81 > d + 3. Then the assertion of
Theorem 2.1 remains true.

As was indicated in the Introduction, the case of arbitrary dimensions d > 5 can
be dealt with if one assumes that the matrix G in the definition of the operator
Ho is rational, i.e. G = aG' where G' is a matrix with rational entries and a is a
positive number. This requirement is equivalent to Skriganov's condition that the
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lattice should be rational (see [21]). Namely, under this assumption M. Skriganov
proves that

m(A) >cA^-1 , d > 5 , (2.4)

for all sufficiently large A. Note that the power of A in (2.4) is bigger than in (2.2).
The estimate (2.4) is derived in [21] from number-theoretic estimates specific for
rational lattices. For general lattices such estimates do not exist. Moreover, one can
show that (2.4) is incorrect if G is not rational and d is large (see Subsect. 2.3).

The proof of Theorems 2.1 and 2.2 also relies on number-theoretic estimates,
but of a different nature. We discuss these below.

2.2. Integer points in the ellipsoid
Let 6 C R^ be a measurable set, and

C^ = { $ 0 ^ : $ + k e C } , k e O ^

Denote by \{ • ; C) the characteristic function of the set C, and by

#(k;C)= ^x(m+k;C)
mez^

the number of integer points in 6^. Using the notation

{/) = / /(k)dk,
JO+

for any function / G ^(C^), one can show that

(#(e))=vol(C). (2.5)

We shall be interested in the number of integer points in the ellipsoid determined
by the matrix G. Let p > 0, F = v^G, and denote by £(/?) = £(p, F), the ellipsoid

{^R^IF^I^}.

Notice that the eigenvalues of the unperturbed operator ATo(k) coincide with |F(m+
k)|2^ me Z^, so that

AT(^;^o(k))=#(k;£(p)). (2.6)

Formula (2.5) shows that the average value of #(k; £(p)) equals w^, where w^ =
J<ri(detG)-1/2 and Kd is the volume of the unit ball in ]R< We shall need bounds
on the deviation of the number #(k; £(p)) from its average value. Denote

^p{p) = <IW(P)) - w^l^, p G [l.oo),

a^(p)=sup |#(k;£(p))-wrf / | . (27)

k

The question of estimating the quantities a? falls in the same category with the
famous circle problem (see e.g. [3]). The circle problem is usually associated with
estimating the number o-oo from above and has been investigated quite well. On the
contrary, for our purposes we shall need bounds from below for o-i(p):

XVII-5



Theorem 2.3 ([16]).

• Let 6 = Sd be as defined in (2.3). Then for sufficiently large p

^^cp^-9. (2.8)

• If d = l(mod4) ^Aen there exists a sequence pj —> oo,j —> oo suc/i that

^(^C^On^-1^, (2.9)

where e > 0 is arbitrary.

As was shown in [10], a^(p) < Cp^^2 for all ri, so that (2.8) is sharp if
d 7^ l(mod4). For these values of d the estimate (2.8) can be easily derived using
an argument due to B.E.J. Dahlberg and E. Trubowitz (see [2] and also [6]). The
proof for d = l(mod4) is much more involved and was obtained in [16] for the first
time. The upper bound (2.9) demonstrates that (2.8) cannot be improved within
the power scale i f d = l(mod4). The lower bound (2.8) will be crucial for the proof
of Theorems 2.1 and 2.2.

Note that (2.8) ensures the estimates (2.2) for the unperturbed operator ^(k).
Indeed, it follows from (2.8) and (2.6) that

fmaxkA^;^o(k)) = maxk#(k; £(p)) > w^+c/i1-^

^mink^(p2^o(k))= mm^#(k'^{p)) < w,pd - cp^-6.

Using the formulae (2.1), one immediately obtains (2.2) for the functions m(A) and
C ( A ) , A = p21 w i t h V = 0 .

2.3. Circle problem
In [21] M. Skriganov obtained a number of conditional results which relate the

behaviour of o-oo{p) as p —>• oo, with the number of gaps in the spectrum of the
Schrodinger operator H = DGD + V with a periodic perturbation, which is not
supposed to be local. In this subsection we comment on some of these results in the
light of recent advances in the circle problem.

Proposition 2.4 ([21], Theorem 15.3). Suppose that d > 5.

• Assume that for a rational G

a^(p)=0(pd-2)^ p->oo. (2.11)

Then there exists a number t > 0 and a (non-local) periodic perturbation V
with the norm \\V\\ = t such that the number of gaps in the spectrum of H is
infinite.
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• Assume that for some G

aoo(p)=o(/~2), p-^oo. (2.12)

Then for any t > 0 there exists a (non-local) periodic perturbation V such that
\\V\\ < t and the number of gaps in the spectrum of H is infinite.

Note that the bound (2.11) cannot be improved for G == I. It has been known
for a long time (see [13] and [3]) that for d > 2

^(ksfi^-w.p^O^-24-6), b=———. (2.13)
d + 1

If k = 0, then one can take a smaller value of b > 0 (see [11] for details). Also, for
d > 5 the estimate (2.11) with k = 0 was shown to hold for rational matrices G (see
[14]) and then for arbitrary diagonal matrices G (see [7]). In the recent paper [1]
(see also [4]) it was shown that (2.11) and (2.12) (for irrational G^s) hold uniformly
in k if d > 9. Thus the conclusions of Proposition 2.4 are valid in dimensions d > 9.

In conclusion we remark that (2.13) leads to the following upper bounds for the
multiplicity Tn(A) and the overlapping function C(A) for the operator H == H^ + V:

m(A) < CA^, C(A) < CX1-1-^.

The proof is elementary and can be found in [21]. Moreover, using the same argu-
ment, one readily concludes that (2.12) implies the inequality

d-1>
21m(A) = o(A~2r), d> 9.

The last two estimates clearly show that in the case I == 1 the bound (2.4) is sharp
if d > 9 and that it cannot hold for irrational matrices G.

3. Sketch of the proof of Theorems 2.1, 2.2
Throughout this Section we assume for the sake of simplicity that V satisfies the

conditions of Theorem 2.2.

3.1. General idea
The proof is based on the following observation. If a point A belongs to a spectral

gap of the operator H , then N(\, k) == const. Vk 6 0^ Therefore, for any p > 0 the
||A^(A; • ) - (A^(A))||p = 0 for all p > 1. Here by || • \\p we have denoted the usual
L^O^-norm. Thus, in order to prove the Bethe-Sommerfeld conjecture it suffices
to check that

| | N ( A ) - ( Y V ( A ) ) | | ^ > 0 , V A > A o , (3.1)

for some p > 1 and Ao € R. Estimate this quantity from below:

| |N(A)-<^(A))||p>||YVo(A)-(^o(A))||p

-\\N(\)-N,{\)\\,-\{N{X)}-{N{\)}\

> ap(p) - 27p09), A = p21, (3.2)
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Here a? is defined as in (2.7) and

W^Wp^-N^p21)^.

Recall that we already have the lower bound (2.8) for <7i(p). Now, to verify (3.1),
it remains to establish a suitable upper bound for Ti (p). It is provided by

Theorem 3.1. Let V satisfy the conditions of Theorem 2.2 and 21 > 1. Then for
any (3 > d + 1 — 4:1 there exists a number po = po{ft) such that

Ti(p) < C^/A (3.3)

for p> PQ.

It follows immediately that

\(N(p21)} - w^| = \{N(p21)} - (A^))| < C^/.Vp > po. (3.4)

This Theorem implies Theorem 2.2. Indeed, since 8( > d+3, we have d+l—4:l <
(d — 1)/2. Choose (3 strictly between these two numbers. Then by virtue of (2.8)
and Theorem 3.1, the inequality (3.2) ensures that

||7V(A) - (7V(A))||i > c^-6 - G/ > dp^--\ (3.5)

thus yielding (3.1) for 81 > d + 3. To prove the estimates (2.2) one notes that the
above lower bound leads to the following two estimates similar to (2.10):

fmaxk N(p21'^ H(k)) > {N{p21)) + cp^-6 ^ w^ + c'/^-5,

\mm^N{p2l^H(k)) < {N{p21)} - cp^-5 < w^^ - c'p^-6.

Here we have used (3.4). Now the same argument as the one employed at the end
ofSubsect. 2.2, provides (2.2).

Remark 3.2. One could attempt to use Z^-estimates with other values o fp / 1. For
instance, one could try to establish a suitable upper bound on Too(p), and then apply
the bounds (2.10) directly. This approach was adopted in [22] for d = 3,1 = 1, where
the proof of an appropriate estimate for Too(p) was based essentially on the upper
bound (2.13). This method does not work for higher dimensions as the discrepancy
between the orders of p in (2.13) and (2.10) becomes too large. On the contrary,
the use of Z^-estimates for I •==- 1 allows to extend the validity of (2.2) to d = 4 as
well.

The rest of the paper concentrates on the proof of Theorem 3.1.

3.2. Operators with constant coefficients
The proof of Theorem 3.1 will be reduced to the study of Ho(k) with a pertur-

bation having contstant coefficents, instead of V. Let 61, 6 3 , . . . , Cn be a collection
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of non-intersecting sets in R^ and let ;̂ e R, j = 1,2, . . . n be a sequence of real
numbers such that \gj\ <, go. Define the operator

n

X(k) = Jfo(k) + ̂ x(D + k; C,),k e Ql.
j=i

Using the fact that X(k) has constant coefficients, and relying upon (2.5), we shall
estimate the I^-norm of N(X; X(k)) - N(A; Ho(k)) via the volume of the sets

r(£(p)\£(T,))ne,,p,>o;
^AP) = \ , . P = A, T21 = A - g j .

[(£(T,)\£(p))ne,,5,<0;

Lemma 3.3 ([17]). LetX(k) be as defined above. Then

(|N(A; X) - N(X; Ho) |) < f^ vol(D,(p))
j=i

/or any \ = p21 ̂  go.

Sketch of the proof. Suppose for simplicity that n = 1. Denote 7 = ̂ (D + k; 61),
Q = I - T. Since X = HyQ © 7X7, it is clear that

N(\; X(k)) = N(\; Tfo(k)Q) + N(\; X(k)7)

= N{\; ̂ o(k)Q) + N(\ - 51; Ho(k)7).

By definition of T it is straightforward to rewrite this formula as follows:

N(\; X(k)) = #(k; ^(A)), C'(A) = (£(p) \ Ci) |j(£(ri) n d).

Using the set Di one concludes that

^^f£(p)U'Di(p), <7i<0;
[£(p)\'Di(p), 51 >0.

Consequently,

#(k; 6') = #(k; £(?)) T #(k; 'Di(p)), ±91 ^ 0.

By (2.5)

(|.V(A;X) - N(A;^o)|) = <#CDi(p))) = vol(2)i(p)),

which completes the proof. D
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3.3. Reduction to the operator X
Before stating the precise result which is used in the proof of Theorem 3.1,

we shall give a simple illustration of application of Lemma 3.3, which will lead to
Theorem 2.1.

Let us write a rough estimate for H(k) = Ho(k) + V:

Ho{k) -v< Ho(k) +V < ̂ o(k) + v, v = ||V||L-, (3.6)

and apply Lemma 3.3 with n = 1, 61 == R^ and g\ = ±z? to both sides of this
inequality. Then vol(Di(/9)) < Cvp^21 for both + and — case. Consequently

Ti(p) < (|A^;^o + v) - Mp2^)!) + (IM/̂ o - v) - A^;^o)|)
< Cvp^21.

This estimate is certainly worse than (3.3). Nevertheless, similarly to (3.5), we have

\\N(\) - (N(A)) |) i > csp^-6 - Cvp^21^

so that the r.h.s. is bounded from below by c//^"1^2""^ if 4/ > d +1 and 6 > 0 is
sufficiently small. As before, this leads to (2.2), thereby proving Theorem 2.1. Note
that the only information on the perturbation V we used, was the boundedness of
V.

To obtain more precise estimate (3.3) we should make a more subtle choice of
the sets Gj. To avoid cumbersome calculations assume that the potential V is the
following trigonometric function:

^(x^Re^e^), V^eC,

with some 6 € Z^. Let 7j,j = 0 ,1 , . . . , n + 1, be a strictly decreasing sequence of
real numbers such that 7^+1 == 0, and

7^,= 21 - 1 - ] E , e = f3 - {d + 1 - 4Q,
% = -J^ 3 = 0 , 1 , 2 , . . . , n.

The number n is chosen from the restriction 0 < 21 — 1 — ne < e. Let Ao = R^ and

^ _ ^(+) | | ̂ (-)
A^ - ^3 U 3 5

A^ = ̂  e R^ : ||F$| - p < a^, |6»G($ ± 0/2)| < 3a^+l},

where the parameter a will be chosen later. Since rjj form a decreasing sequence,
we have \n C A^_i C • • • C Ao. Define the non-intersecting sets

Gn = A^, Qj = A^ \ A^i, j = 0 , 1 , . . . , n - 1.

Now instead of the elementary rough estimate (3.6) we have
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Theorem 3.4 ([17]). Let V be as above, and let

n

X±(p;k)=^o(k)±^^p-^+ lx(D+k;e,) ,
j=o

with v == max \V\. Then there exists a number a = a(v) such that

X-(p;k)<^o(k)+V<X-^;k),

for all sufficiently large p.

The definition of the sets Aj may look artificial, but they are natural for the
problem at hand. Similar sets were used by M. Skriganov (see [21], [22]) and also
by Yu. Karpeshina (see [9]). In the literature they are sometimes referred to as
"resonant" sets.

Now, to complete the proof of Theorem 3.1 it remains to apply Lemma 3.3 to
the operators X+ and X_. As in the proof of Theorem 2.1 above, vol^o^)) <

Cp'^p^21 = Cp0. Furthermore, it is a simple geometrical exercise to realize that
for j > 1

2),(p) C {^ € ̂  : p - Cg,p1-21 < |F |̂ < p + Cg,p1-21,

|(9G($ + 0/2)| < 3a^-H or |0G($ - 0/2}\ < 3a^+l},

with QJ == /)-<77+l. It is now easy to conclude that

vol^?)) < Cag^-^p^ = ^^-7^i+^-i-2!+^+i

= Cf^-2^+l^+d-l-2^+l ^ ^^^

for all j > 1. Now by Lemma 3.3
n

(|YV(AA) - .V(A;^o)|) < ̂ vol(^-(p)) < Cp0.
3=0

By virtue of Theorem 3.4 this implies (3.3).
In the case of a general potential V € C^C^) one approximates V by a truncated

Fourier series, and then constructs the sets Gj for each Fourier component.
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