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Blow-up for solutions of hyperbolic PDE
and spacetime singularities.

Alan D. RENDALL

Abstract

An important question in mathematical relativity theory is that of the
nature of spacetime singularities. The equations of general relativity, the Ein-
stein equations, are essentially hyperbolic in nature and the study of space-
time singularities is naturally related to blow-up phenomena for nonlinear
hyperbolic systems. These connections are explained and recent progress in
applying the theory of hyperbolic equations in this field is presented. A direc-
tion which has turned out to be fruitful is that of constructing large families of
solutions of the Einstein equations with singularities of a simple type by solv-
ing singular hyperbolic systems. Heuristic considerations indicate, however,
that the generic case will be much more complicated and require different
techniques.

1. Introduction

Anyone who has worked with nonlinear hyperbolic equations is familiar with the
phenomenon that smooth solutions often cease to exist after a finite time. There
are two common ways in which this happens. In the book of Alinhac[1] these have
been called the ‘ODE blow-up mechanism’ and the ‘geometric blow-up mechanism’.
In the first case the solution itself is unbounded as the blow-up time is approached.
In the second case the solution itself remains bounded while the first derivative is
unbounded. Although the Einstein equations, which are the subject of the following,
are arguably the most geometric of hyperbolic differential equations the blow-up
which is typically encountered occurs by the ODE mechanism in the terminology of
[1]. At the same time, the question of the sense in which the Einstein equations can
be called hyperbolic is delicate. These points are related, as will now be explained

The basic unknown in the Einstein equations is a pseudoriemannian metric g.
The equations are diffeomorphism invariant, in the sense that if a metric g on a
manifold M satisfies the Einstein equations and if ¢ is a diffeomorphism of A onto
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itself, then the pull-back ¢*g is also a solution. In order to make contact with PDE
theory as it is usually formulated, it is necessary to choose a local coordinate system
z® on M and treat the components g,5 of the metric in this coordinate system as
the basic unknowns. The Einstein equations imply a system of second order partial
differential equations for these components. This system cannot have a well-posed
Cauchy problem because of diffeomorphism invariance. For suppose that g,z is a
solution of these coordinate equations with given initial data. The functions g,z
are the components of a metric g. Now let ¢ be a diffeomorphism which leaves
a neighbourhood of the Cauchy surface invariant and let g = ¢*g. Then g,p is a
solution with the same initial data as g,3. However it is in general not equal to g,g.
Thus uniqueness in the Cauchy problem in the usual sense fails for this system. On
the other hand, there is a different uniqueness statement which does hold. It says
that if ¢ and g are metrics with the same initial data on a suitable Cauchy surface
then there exists a diffeomorphism ¢ such that § = ¢*¢g which is the identity on
the Cauchy surface. In the following the precise mathematical formulation of this
statement will not be required, but the intuitive idea is important. It should be noted
that this uniqueness property, often called geometric uniqueness, is exactly what is
desired from the point of view of physics since metrics related by a diffeomorphism
should be regarded as physically indistinguishable.

It has now been indicated that diffeomorphism invariance presents a difficulty
when studying the Cauchy problem for the Einstein equations. How can this diffi-
culty be overcome? In principle, one could attempt to construct a diffeomorphism-
invariant version of PDE theory but this has apparently never been done. In prac-
tice, the procedure is to require some condition relating the coordinates to the met-
ric. This breaks the diffeomorphism invariance and opens up the possibility that
with this extra condition imposed the Einstein equations imply a system of hyper-
bolic equations called the reduced equations, and that conversely suitable solutions
of the reduced equations give rise to solutions of the Einstein equations. Details
on this procedure of hyperbolic reduction can be found in [6]. There are many
different kinds of hyperbolic reduction and the task is to find reductions which are
well-adapted to given problems.

The Einstein equations are the basic equations of general relativity, which is
the best existing theory of the gravitational field. Within this theory spacetime
singularities, such as the big bang, correspond to singularities of g, which cannot
be removed by a diffeomorphism, even one which itself becomes singular where g,
does.

2. The Gowdy equations

A useful laboratory for studying questions concerning the global behaviour of
solutions of the Einstein equations is the class of Gowdy solutions. These have high
symmetry and after a suitable hyvperbolic reduction give the following system of
semilinear wave equations:

—O!X —t7'OX + X = 2(0,X0,Z — 0,X0,2) (1)
07 —t71'0,Z +0*Z = —e ((0,X)? - (0. X)?)
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Here (t,z) € (0,00) x R and X and Z are real-valued functions. Because of the
symmetry only one space dimension remains. It will be useful to compare this with
the equation

—8}u + O2u = —e* (2)
The equation (2) and its higher dimensional analogues have been studied in a series
of papers by Kichenassamy and Littman[7, 8, 9, 10, 11]. Partial results of a similar
type for (1) have been obtained in [12] and [15]. An obvious difference between the
equations (1) and (2) is that while the singularities in solutions of (2) develop dy-
namically in the (¢, z) plane there is a singularity in the coefficients of (1). Moreover
it was proved by Moncrief[13] that smooth Cauchy data for (1) at ¢ = ¢, > 0 develop
into a smooth solution on the whole of the interval (0,00). In fact this difference
is more apparent than real. When proving theorems about (2) it is convenient to
introduce a function which is constant on the singular hypersurface and rewrite the
equations in terms of that. In reality, a corresponding procedure has been carried
out when introducing the coordinates used in the Gowdy equation. This is so natu-
ral in the context of the Einstein equations, where a priori all time coordinates are
equally valid, that it might pass unnoticed.

The nature of all these results is that they demonstrate the existence of large
families of solutions of the equations whose singularities can be described precisely.
This is achieved by using certain singular hyperbolic equations, whose singularity
is of the type known as Fuchsian. The description of the singularity is given by
an asymptotic expansion, which contains a number of free functions. These free
functions may be called ‘data on the singularity’. If these data are analytic then
the expansion actually converges. The case of analytic data is easiest to handle.
This was done for (2) in [7] and [8] and for (1) in [12]. The results for (2) were
generalized to the case of smooth data (in fact data with sufficiently high order
Sobolev regularity) in [9]. The theory developed there does not suffice to cover
(1) with data which are smooth but not analytic. This difficulty was overcome
in [15], where there is also a general discussion of the issue of extending results
using Fuchsian techniques from the analytic to the smooth case and a survey of the
literature where these techniques have been applied to problems in general relativity.

Now the asymptotic expansions for solutions of the Gowdy equations will be
presented for illustration.

X(t,z) = Xo(x) + O ((z) + v(t, 2)) (3)
Z(t,x) = k(z)logt+ ¢(x) + u(t,x) (4)

Here the functions u(t, z) and v(t, z) are remainder terms which are o(t) as t — 0.
Note the occurrence of powers of ¢ with exponents depending on z in the expansion
for X. It is these which cause additional technical difficulties in this case as compared
to the case of (2). Solutions of the above form are obtained for smooth data X,
k, ¢ and v which are arbitrary except for the restrictions that 0 < k(z) < 1. The
significance of the condition £ > 0 will not be discussed here. The condition £ < 1,
known as the low velocity condition, will play a significant role in the following
discussion. It turns out that it can be removed at the expense of requiring that X
should be constant. In this way a class of high velocity solutions can be obtained.
They depend, however, on one less free function than the low velocity solutions.
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For the physical interpretation of the results on singularities in Gowdy spacetimes
it is important to know that the singularity in the metric coefficients at ¢ = 0
cannot be removed by a diffcomorphism. One way of doing this is to consider
scalar polynomial quantities in the curvature of the metric. These are real-valued
functions which are defined in a coordinate invariant way. One of the simplest
is the Kretschmann scalar K, which is the squared length (with respect to the
given metric) of the Riemann curvature tensor. It is a function of X, Z and their
first and second order partial derivatives whose explicit form is very complicated.
Fortunately, for a solution with an asymptotic expansion of the type given above it
is not too difficult to calculate the leading term in the expansion of K about ¢ = 0.
The result, discussed in [12], is

K ~ Q(kyt~3k+1/4 (5)

for a certain quartic polynomial ¢ whose only positive root is at £ = 1. Thus,
provided k # 1 everywhere, K blows up uniformly as ¢t — 0.

An important issue is that of the generality of the solutions constructed by the
above techniques. They are general in the crude sense that they depend on the same
number of free functions as data for the same equations on a regular Cauchy surface.
In the case of (2) Kichenassamy proved in [10] using the Nash-Moser theorem that a
non-empty open set of data on a regular Cauchy surface develop into solutions of the
type constructed by Fuchsian techniques. Up to now no corresponding results have
been proved in problems arising in general relativity, such as the Gowdy problem.
By a more direct approach, Chrusciel [5] was able to show that a large open set of
data for the Gowdy equations lead to solutions where the Kretschmann scalar blows
up as t — 0. Note that while the methods used in [5] were special to one space
dimension, Fuchsian techniques do not depend essentially on the dimension.

3. The Einstein-scalar field equations

As mentioned above, the unknown of central importance in the Einstein equa-
tions is a metric g. Physically, it contains the information about the gravitational
field and hence about the mutual gravitational attraction of material bodies. Thus
it is natural that in any model involving the Einstein equations a description of the
matter present is also necessary. In fact, in general relativity the gravitational field
has degrees of freedom which can propagate in the absence of matter. This leads
to the phenomenon of gravitational waves. The equations in the absence of matter
are known as the vacuum Einstein equations and have the simple geometric form
Ric(g) = 0, where Ric(g) is the Ricci curvature of g. In the presence of matter
these equations acquire a non-vanishing right hand side. An example which will
be important in the following is that of the Einstein-scalar field equations. In that
case the Einstein equations take the form Ric(g) = V@ ® V. In general the matter
fields must satisfy some equations of motion and in the case of the scalar field the
equation of motion is that ¢ should satisfy the linear wave equation defined by the
metric g. In coordinate components this takes the form

9°% (84050 — T730,0) = 0 (6)

XIV-4



where ]

Il = 5975(@:9/16 + 08905 — 959a8) (7)
are the Christoffel symbols of g. Here we use the summation convention and ¢®? is
the inverse matrix of gqg.

It is known that in some cases the singularities of solutions of the Einstein
equations display complicated oscillatory behaviour and it is suspected that this
occurs under very general circumstances. The best known example of complicated
behaviour is the Mixmaster solution. This is a solution of the vacuum Einstein
equations which is symmetric under the group SU(2). The Einstein equations re-
duce to ordinary differential equations but the ODE solutions are very complicated.
Until recently our knowledge of the Mixmaster solution was based on numerical
calculations and heuristic arguments. Now a number of features of this picture have
been proved rigorously by Ringstrom[16]. The generality of Mixmaster behaviour is
still out of reach of present analytical results. There have, however, been interesting
advances in numerical approaches. (See [17].)

General predictions about the nature of singularities in solutions of the Ein-
stein equations come from heuristic work of Belinskii, Khalatnikov and Lifshitz [3].
According to their picture the singularities in solutions of the vacuum Einstein equa-
tions should look like a different Mixmaster solution at each spatial point near the
singularity. In particular the evolution at different spatial points decouples and
the solution of the PDE system can be approximated by solutions of an ODE sys-
tem. (Here we are reminded of the ODE blow-up mechanism in the terminology
of Alinhac.) The same picture suggests that for the Einstein-scalar field system
the decoupling should still take place but the ODE solutions should now be mono-
tone rather than oscillatory near the singularity. This gives rise to a hope that the
Einstein-scalar field system should be easier to handle analytically than the Einstein
vacuum equations. Following this lead, it was shown in [2] that a Fuchsian analysis
could be carried out for the Einstein-scalar field system without any need for sym-
metry assumptions. Solutions are obtained which depend on the same number of
free functions as there are in the Cauchy data on a regular Cauchy surface. In this
crude sense the solutions are general. Only the analytic case was treated up to now.

The asymptotic expansions obtained will now be presented. This is only done
for a certain diagonalizable case. This does not restrict the number of free functions
although it is a restriction on the solutions and a large part of the work of [2] was
devoted to showing that the restriction is unnecessary. On the other hand, the
diagonalizable case is best suited to explain the results. For physical reasons we
are interested in solutions on a four-dimensional manifold. The time coordinate is
denoted by z° and the spatial coordinates by z¢ with a = 1,2,3. The Gaussian
coordinate conditions

9o = -1 (8)

goo = 0 9)

are imposed. The asymptotic expansions for the remaining unknowns are as follows:
Gap = tPUly + tP2mamy + tP3n,ny + o(t%b) (10)

¢ = Alogt+ B+o(1) (11)
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Here py, p2, p3, la, M4, na, A and B depend on the spatial coordinates z¢ and
p1 + po + p3 = 1. The g, are suitably chosen real numbers, which will not be
discussed in detail here. The important thing is that they represent higher order
terms. The functions occurring in the expansion must satisfy certain algebraic and
differential equations which will also not be discussed, except to say that there is a
good understanding of the solution set of these equations. There is an equivalent of
the condition k < 1 in the Gowdy case, namely that all p, should be positive. This
implies that all p, are smaller than one.

The conclusion of this work is that it provides strong support for the ideas
of Belinskii, Khalatnikov and Lifshitz in the case that a scalar field is present.
The conceptual, geometric and calculational aspects of the proof are a lot more
complicated than in the Gowdy case, but the analytic input is almost identical.

4. The nonlinear scalar field

From the foregoing discussion of the great difference in the nature of singularities
in solutions of the Einstein equations caused by the presence of a scalar field the
impression might arise that the whole question depends in a delicate way on the
exact nature of the matter fields present. In fact this impression is probably false:
there should probably only be a small number of universality classes which cover
most types of matter. This will be illustrated by a class of matter models which
will be referred to collectively as the nonlinear scalar field. It turns out that a
wide variety of choices of the parameters which go into the definition all lead to the
same asymptotic behaviour, which is that of the (linear) scalar field discussed in the
previous section. This will also allow some of the aspects of the Fuchsian theory to
be shown in action.

The main interest for physicists of the equations obtained by coupling the Ein-
stein equations to a nonlinear scalar field has been the the phenomenon known as
inflation. The mathematics of relevance to inflation concerns the behaviour of the
solutions in the direction away from the singularity and so has no direct connection
with the discussion below.

Consider first the following equation
~07¢p —t7'0p + Ap = mPp + V'(9) (12)

Here ¢ is a real-valued function, A is the Laplacian on R™ (the case of n = 3 is of
most interest for the following) and m is a constant (mass) which we may as well
take to be non-negative. The function V' (potential) is smooth and V' vanishes at
least quadratically at the origin. The separation of the right hand side into the sum
of a mass term and a potential term has no essential significance in this problem.
It is convenient for making contact with the notation used in the physics literature.
The aim is to determine whether this equation has solutions which near ¢t = 0 have
the leading order asymptotics A(z)logt+ B(z) already encountered in the previous
section. To this end, introduce v = t7¢(¢ — Alogt — B), where € is a positive
constant, whose purpose will be seen later on. When reexpressed in terms of ¢ the
equation (12) becomes:

—200 — (2e+ )10y~ + 2AG = —2¢log tAA — 2AB
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+12¢m?(Alogt + B + t¢) + W(t, z, %) (13)

where W (t,z,v¢) = t*7¢V'(Alogt + B + ). The equation has been multiplied by
t2 so as to make the combination ¢d/dt appear. Some choices of V to be found in the
physics literature are V;(¢) = V4, a constant, Vo(¢) = ¢%, V3(¢) = €”¢ for positive
constants o and . The value of the constant V4 has no effect on the equation (12)
but does have an effect when the coupling to the Einstein equations is considered.
The potential V; combined with a non-zero value of m occurs in a model known as
chaotic inflation. The potential V3 occurs in what is called power-law inflation. (It is
not the potential itself which has power-law behaviour, but the long-time behaviour
of the solution.) The functions W corresponding to V;, V, and V3 are W (¢, z,v) = 0,
Wa(t,z,9) = at?’ ¢(Alogt + B + t<9)*"! and Wi(t, z,1) = BePBt2-¢+BA exp(Bter)).
The functions Wi, W, and W3 are smooth for t > 0. Suppose that the function A is
nowhere vanishing. Then W, and W, extend continuously to t = 0 by defining them
to be zero there. This is also true of their derivatives with respect to the arguments
x and @. This will be abbreviated by saying that the functions W; and W, are
regular. As for W3, can be made regular in this sense by choosing € sufficiently
small provided A > —23~!. This is a restriction on the data on the singularity. In
particular, if § is negative then it bounds A away from zero. If V had been chosen
to grow even faster at infinity, e.g. V(¢) = % then the corresponding W could not
have been made regular by imposing inequalities on A. This type of potential with
faster then exponential growth does not seem to occur in the physics literature and
the Fuchsian theory does not seem to apply to it. It will not be considered further
here.

The Fuchsian theory we will use concerns first order systems and thus the first
step in the analysis is to reduce (13) to first order in a suitable way. Let v = t0;¢+e
and w = t0;%. Then the the following system is obtained:

toy+ep—v = 0
tow+ (e — Dw = tov (14)
tow+ev = tow+ AAt*“logt +t* “AB
—t**m?(Alogt + B + ) + W(t,z,)

This system is of the following general form for Fuchsian equations:
tou + N(z)u = t"f(t, z,u, Opu) (15)

for some n > 0. It is also symmetric hyperbolic, a luxury which is usually not easy
to obtain in problems in this area. On the other hand, it does have a disadvantage.
The theorem proved in [12] required the assumption that t¥(®) be bounded for ¢ near
zero. To obtain this the eigenvalues of N(z) should have non-negative real parts.
Since € has to be chosen small in general, depending on the data, the eigenvalue
¢ — 1 will be negative and this condition is not satisfied for the equation (14). An
alternative form is obtained by substituting the definition of v back into (14) in one
place. The result is:

tow+ep —v = 0
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tOw +ew = t0;v + t0 Y (16)
tO + €v t0,w + AAt>“logt + t> “AB
—t*"*m?*(Alogt + B + ) + W(t,z,7)

The equation (16) is not symmetric hyperbolic. It does, however satisfy the condi-
tions of the existence theorem for the case of analytic data proved in [12]. In order
to ensure this it is important that € is positive. If ¢ were chosen to be zero then
all the eigenvalues of the matrix N(z) would vanish but the matrix would not be
diagonalizable. This would violate one of the conditions assumed in [12], namely
that zero eigenvalues, if they occur at all, only occur through N(z) being a direct
sum of a matrix whose eigenvalues have positive real parts with a zero matrix.

The result of the previous discussion is that given analytic functions A and B
with A nowhere vanishing then if the restrictions on V and A already obtained are
satisfied there exists a unique solution, analytic in z and continuous in ¢ of (12) with
the desired asymptotics. This shows the existence of a family of solutions depending
on two free analytic functions, which is the same as the number of functions which
can be given as data on a regular Cauchy surface.

In [15] a method for going beyond the analytic case in Fuchsian problems was
applied to the Gowdy equations. Since the matrix N(z) occurring in (16) does not
depend on z it should be possible to prove an existence theorem for that equation
with smooth data given on the singularity by the methods of [9]. Here we would
like to note that the method of [15] generalizes easily to the case of smooth data for
(12). The main idea is to use both the systems (14) and (16). If the smooth data
is approximated by a sequence of analytic data then a corresponding sequence of
analytic solutions can be produced using (14). These define a sequence of analytic
solutions of (16). Then the fact that the latter equation is symmetric hyperbolic
allows the use of energy estimates to prove that the sequence of analytic solutions
converges to the desired smooth solution. Details of the procedure can be found in

[15].

5. Coupling the nonlinear scalar field to the Einstein equa-

tions

In this section it will be shown that the Einstein equations coupled to the non-
linear scalar field can be handled by the same method as that used for the case with
m =0 and V' = 0 in [2]. The arguments will only be sketched since most of the
steps are identical. The potential will be assumed to be one of the functions Vi, 1,
or V3 considered in the last section. In addition it is assumed that A # 0 and that
in the case of V5 the inequality A > —237! holds. The Einstein equations take the
form

Riclg) = Vo ® Vo + [m*6% + V(8)lg (7)

Evidently this equation does change if V" is changed by an additive constant. The
equation for the scalar field is

9% (02036 ~ T350,0) = m*¢ + V' (¢) (18)
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Applying the Gaussian coordinate conditions goo = —1 and go, = 0 gives
g°P0,030 = —~02¢ + 920,050 (19)

and the close relation of equation (18) to equation (12) begins to become apparent.
We are looking for solutions to the Einstein equations coupled to a nonlinear scalar
field where the metric has the asymptotic form found in [2] for the case of a linear
scalar field. This form implies that the quantities t2¢g® all vanish like some positive
power of t as t — 0 and thus do not disturb the Fuchsian form of the wave equation.
The same holds for the quantities tI'® and the quantity ¢tI'° is equal to one up to
higher order terms. These facts cannot be easily seen from the equations given in
this paper. To check them it is necessary to use more detailed results from [2]. The
conclusion is that up to higher order terms the equation (18) agrees with the model
equation (12).

What remains to be done in order to check that the Einstein equations coupled
to a nonlinear scalar field have solutions which behave asymptotically like those for
a linear scalar field is to see that certain source terms in the Einstein equations are
equal to those in the case with a linear massless scalar field (which has already been
solved in [2]), up to terms of higher order in t. The essential thing is to estimate
the quantity 87¢ + 1m?¢? + V(¢). More specifically it is necessary to estimate the
deviation of this quantity from the corresponding quantity with » = 0 and show
that it is O(¢~2*°) where oy is a positive parameter introduced in [2]. In the course
of the proofs in that paper it is permissible to reduce the size of the number o if
required. It is easy to check that, under the assumptions already made on V and
A, the parameter o can be chosen so as to ensure this estimate. This is the same
kind of procedure as choosing € small in the case of the nonlinear scalar field. The
information obtained in this way must be used in two places. It must be used in
the Einstein constraints in estimating the quantity C of [2]. It must also be used in
evolution equations for k%, in [2], which constitute the essential part of the Einstein
evolution equations. The additional contribution which arises when passing from
the massless linear scalar field to the nonlinear scalar field does not change the
equations for @ # b. For a = b the coefficient oy appears. It can be concluded
from all this that solutions of the Einstein equations coupled to a nonlinear scalar
field which have the same asymptotics as in the case of a massless linear scalar
field and which are of the same degree of generality can be constructed by Fuchsian
techniques. This has been shown under the assumption that the potential is of one
of the forms Vi, V5 or V3 and that in the third case the initial datum A satisfies
an additional restriction. In this proof the velocity-dominated system, which is the
syvstem of equations satisfied by the leading order approximation to the solution. is
the same as in the case of the massless linear scalar field.

6. Formation of localized structure

It has already been indicated that the use of Fuchsian theorv to construct space-
times with singularities of a well-understood type is not likely to be sufficient to
handle general singularities of solutions of the Einstein equations, due to the ap-
pearance of oscillatory behaviour in time as the singularity is approached. There is,
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however, another effect which complicates the situation in an essential way. Note
that the solutions constructed by Fuchsian techniques are such that the solution
blows up like logt as ¢ = 0 is approached and the spatial derivatives of the solutions
of all orders are also O(logt). Taking spatial derivatives does not increase the rate
of blow-up. It will now be shown that there are solutions for which this property
does not hold. Consider the transformation:

X = X/(X?*+¢€*?) (20)

Z = logle? /(X% + €*?)) (21)

This transformation is equal to its own inverse and transforms solutions of the
Gowdy equations into solutions. The idea is now to take a solution (X, Z ) with the
low velocity asymptotic behaviour and transform it to a new solution (X, Z).

The case will be considered that X,(0) = 0, Xo(x) # 0 for z # 0 and 8, X,(0) #
0. For the transformed solution X? + €24 is of the form

(Xo)? + (€2 + 2Xo0)t2 + o(t) (22)

From this it is not hard to see that X is bounded on an interval about z = 0
uniformly in ¢t. Similarly Z = O(logt). Thus the transformed solution (X, Z) does
not blow up any faster than the original solution (X' 7 ). However spatial derivatives
blow up faster in general. To see this it suffices to evaluate Z(¢,0) and Z(t,t/?).
The second of these is bounded for values of z close to x = 0 as ¢t — 0 while the first
behaves like —klogt. It follows from the mean value theorem that the maximum
value of 8;Z in a small region about z = 0 must blow up at least as fast as t~*/2.
Of course precise rates of blow-up could be calculated for this and higher order
derivatives if desired. It is seen that these solutions of the Gowdy equations, unlike
those constructed by the Fuchsian method, have spatial derivatives which blow up
faster than the function itself. There is formation of localized structure.

In the explicit example given above the localized structures formed do not have
an invariant geometrical meaning and are due to a bad choice of variables. On the
other hand, there is convincing numerical evidence due to Berger, Moncrief and
collaborators for a second kind of localized structure. In the latter case there is no
reason to doubt that there is a real geometrical effect involved. For a survey of this
work and some pictures of the structures, see [4]. There is also a lot of interesting
work on the subject using heuristic methods. A rigorous treatment is still lacking.

Although this is still in the domain of speculation, there are arguments that in
more general situations things will get yet more complicated. The basic idea will
now be sketched. The oscillatory behaviour in the Mixmaster model is composed
of a series of bounces where expansion turns into contraction and vice versa. In the
inhomogeneous case bounces of this kind are supposed to happen independently at
different spatial points. However this does not always happen coherently. There
are spatial regions of coherent behaviour but these split into smaller regions as the
singularity is approached. On the boundaries between regions spatial derivatives
become large. The localized features observed in the Gowdy solutions are simple
examples of boundaries of this kind. The heuristic models available suggest that in
the Gowdy case this kind of formation of structure will only happen a finite number
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of times, at least for generic solutions. In the general case, on the other hand,
it is expected to happen infinitely many times before the singularity is reached,
creating structures on arbitrarily small spatial scales. This behaviour has been
called ‘spacetime turbulence’. Information on this can be found in [14]. It has
also been suggested that this process which is predicted by the picture of Belinskii,
Khalatnikov and Lifshitz actually shows that the picture must eventually break
down in the generic case before the singularity is reached.

It seems clear that it will take a long time before the ideas mentioned in the last
paragraph can be brought into the fold of well-understood mathematical phenomena.
Nevertheless, the recent progress described in this paper is a ground for optimism
that there will be significant mathematical developments in the area of singularities
of solutions of the Einstein equations in the next few years.
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