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Journees Equations aux derivees partielles
Nantes, 5-9 juin 2000
GDR 1151 (CNRS)

Semiclassical expansion for the thermodynamic
limit of the ground state energy of Kac^s operator

Bernard HELFFER Thierry RAMOND

Abstract
We continue the study started by the first author of the semiclassical Kac

Operator. This kind of operator has been obtained for example by M. Kac as
he was studying a 2D spin lattice by the so-called "transfer operator method".
We are interested here in the thermodynamical limit A(/i) of the ground state
energy of this operator. For Kac's spin model, A(h) is the free energy per spin,
and the semiclassical regime corresponds to the mean-field approximation.

Under suitable assumptions, which are satisfied by the physical examples
we have in mind, we construct a formal asymptotic expansion for A(/i) in
powers of h^ from which we derive precise estimates on A(h).

We work in the settings of Standard Functions introduced by J. Sjostrand
for the study of similar questions in the case of Schrodinger operators.

1. Introduction
We continue the study started by the first author of spectral properties of a

class of integral operators, often called Kac operators or transfer operators. These
operators appear in particular in statistical physics, for example when studying
gaussian-like measures exp(—^(x))dx by the so-called transfer matrix method (see
e.g. [He3, Section 6]). As already noticed in the case of the Ising spin model, it
appears indeed that thermodynamical properties of some statistical systems can be
described in terms of spectral quantities attached to a transfer operator (a matrix in
the Ising model case). Let us describe briefly the example of a spin model introduced
by M. Kac (see [Ka]).

We write \rn,n == { 1 , . . . 5 n} x (Z/mZ) and we consider the following hamiltonian
En,m fo1' a configuration of spins a G {—1,1}^^:

En,m(cr) = ^ w p ^ a p a p ' ,
P^P'^n.m

MSC 2000 : 35Q40, 81Q20, 82C70
Keywords : Kac operator, Transfer operators, Thermodynamic limit, Standard functions, Semiclassical problems in
high dimension.
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where, with P = (^ Q, P' = (^ Q e A^,

_ f 0 if P = P',
wplp/ ~ \ 7e-71fc-fc/l((^ 4- ĵ -i,, + 8^)) if P ̂  P'.5

To make it short, we consider a nearest neighbour interaction between rows, with
an exponential decay with respect to the distance between columns. The constant
7 is positive, and measures the rate of decay of the interaction. The regime 7-4-0
corresponds to the so-called mean field approximation. Defining as usual (see for
example [El]) the partition function Zn,m as

Zn^m = ^ exp(-/?£^),
aet-l,!}^^

where (3 > 0 is the inverse of the temperature, the free energy per spin in the
thermodynamical limit —/?<& is defined by

-^ = lim i lim lnzn^.
m—^oo fvi ^—>oo Tl

M. Kac remarks that this free energy per spin can be computed through the following
formula

In // (m)

- /^=ln2-/?7+ lim —/-1—.
m->oo 77^

Here ^(m) is the first eigenvalue of the compact operator K^ on ^(R771) given by
1 77i m

K = e-^e-^e-^/2, V(x) = - E ̂ 2 - E log cosh^^, + ̂ )).
' j=i j=i

What is certainly more challenging is that phase transitions might also be seen
looking at the behaviour of ratio ^V^"^ as m -)• +00. Indeed this quantity is
directly related to the correlation function between two spins in the same row (see
[He3]).

Our concern in this paper is the semiclassical Kac operator

^(/^exp-^-.exp^A.exp-1- (1.1)
z ^

where V : R771 -> R is a C°° function like V{x) = E7=i v(xj) + w{x,, x,^) with the
convention that Xm+i = x^. The function V is non-negative and convex at infinity.
The function w will be called the interaction potential. Here we study the behaviour
as h —> 0 of the thermodynamical limit A(/i), and more precisely we want to obtain
an asymptotic expansion for A(/i) in powers of h. We would also like to mention a
recent paper by J. M0ller, where another asymptotical regime is studied (the low
temperature limit) for this kind of operator. Both of these works have been initiated
in [He4], following a strategy which has been succesfully used in [He-Sj] in the case
of Schrodinger operators:

1. for each fixed m, perform a WKB-type construction for the first eigenfunction
and the logarithm of the corresponding eigenvalue: -ln(^(^m)) ~ F^ +
•r^(m.} iF^/^...;
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2. show that for each j the sequence ( F - /m)m converges towards a certain A,;

3. show that A(/i) does indeed have Ao + Ai/i + . . . as an asymptotic expansion
as h -> 0.

The first step has been completed in [He4], and it was also shown that the
sequences ( F ' ^ / m ) ^ are bounded. Our aim here is to complete the two last steps.
As the reader will see, some information about the decay of the eigenfunction is still
missing, and the third step is not yet completely done. However we will give in the
last section a precise lower bound for A(/i).

Remark 1.1 The question of existence of the thermodynamic limit has been al-
ready addressed in [He2] at least for fixed h. Former works were considering the
same question for Laplace integrals ([Ru], [Hel]), or for Schrodinger operators ([Sjl],
[Sj2], [He-Sj]). Here we will not comment further on that problem.

Our study will strongly rely on the notion of standard functions which has been
introduced by J. Sjostrand in [Sj3]. In particular in order to state our results, we
have first to recall some notations and definitions.

2. Standard functions
For x € R771 and for p € [1, +oo[, we shall write \x\p -==. (E^=i l^-l^)1^ and \x\^ =

max^i^.^} \Xj\. If, for each m 6 N\{0}, Q^ is an open subset of R771, we write
will Q = i^^m. Most often we will be concerned with B^{0,R) = (B^^O.R^rn
where

B^^R)={xeWn^x^<R}^

or more generally with an Q such that Boo(0,J?i) C ^ C Boo(0,R^) for some
0 < RI < R^. It will also be convenient to use tensorial notations for successive
gradients of a C°° functions / : R771 —> R: for k > 1 we define by induction

(V^/Or), ui ( g ) . . . ® Uk} = (V^-V^), ui ® . . . 0 Uk-i), Uk)

where U i , . . . , Uk are vectors in R771.

2.1. ^-functions

Definition 2.1 A sequence a = (a^)^ of C°° functions a^ : Q^ -> R is an
S°-function on Q (belongs to S°(^)), if:

V f c > l ,3C^>0,VmeN\{0},V:r € ^M^i,... ,^) € (ItT^,

KW^), u, ® . . . ® ̂ )| < Ck\u^... KL (2.1)

for any (p i , . . .ph) G [1, ^-oo^ such that — + . . . + — =1.
Pi Pk

XIII-3



m

Example 2.2 Let a = (a^) with a^^.r) = ^/(^), where / : R -> R is a C°°
j=i

function. We have
m

(W^), ̂  ® . . . ® U,} = ̂  /^(^lO) . . . Uk{j)

J=l

where u{j) is the j-th component of the vector u € R771. With ^ = £?oo(0, R) and
for Ck = supi^i^ |/^(s)|, we get (2.1), using the multilinear Holder inequality.

Here and in what follows we write for short

l^lp^ \ut\pl"m\uk\pk'

We will also meet successive gradients of functions from R^ to R or directly
functions from R^ to an (^^-space (^ == (R^l |p)) for some ko, in particular
vector fields (A:o = 1). We will need the following definition.

Definition 2.3 A sequence b = (b^)m, b^: ̂ (m) -^ ((R771)^0), belongs to<S^°(Q) if

V A ; > 0 , 3 C ^ > 0 , V m c N \ { 0 } ,

v^e^m\V(^l,...,^)e(Rm)^v(^,...,^)c(Rm) fc^
[(V^^^^i ® .. .^)^i (g)... ®^)| < Ck\v\p\u\^ (2.2)

for any (p^) C [1, +oo]feo+fc such that ^ + • • • + ^ + 7 + • • • + ^ = l •

Notice that the estimates (2.2) are precisely those one gets for ^7kb if b == V^a
for an <S°-function. In particular b == V^a is a 5^°-function as soon as a C 5°.

2.2. ^-functions
We will also need weighted standard functions. Let us first describe what we

call weights. For any m € N* we denote by 7^77^ a set of functions from { ! , . . . , m}
with values in ]0, +oo[ having the following properties:

1. If p € TZ^, then 1 / p belongs also to TZ^.

2. If pi, p2 € U^, then for all t G [0,1], //^-( belongs to TZ^.

Example 2.4 Let a be a positive number. The set Ti^ of all functions p^ such
that

p^d}^a < r ^ ^ < ̂ J e z/mZp^U+i)- '
satisfies the above properties. We will consider below the class of functions p^
given by p^(y) = eamin(J'm+l-J) for one fixed a e]0,1].

Definition 2.5 We denote by K the set of sequences p == (p^)m ^vhere p^ e
7^^^ and the elements ofR will be called weights.

XIII-4



From now on, we work with a fixed set of weights 7t and we will denote by
^(R"1) the vector space R7" equipped with the norm | |p^, where p E [1, +00] and
p € '^(m), given by

( m V7'Mp,p- Eipow •
V=l /

The notion of <S^-function is only a slight modification of that of an <?°-function.

Definition 2.6 A sequence a = (a^)^ ofC°° functions a^ : Q^ -> R is an
<S^-function on Q (belongs to <?^(^) ), if:

\/k^ l,^C'fc>0,Vm6N\{0},Va;e^ ( r" ),V(^l,...,^fc)e (R"̂

KV^a^^^i ® ... ® Uk}\ < CMp^, . . . \Uk\p^ (2.3)

for any (pi,- • -Pk) € [li +oo]fc such that — + . . . — = 1, and for any (y0i, . . . pk) €
^(m)^ gy^ ^^^

pi . . .PA: = 1.

The corresponding definition of a <S^°-function is left to the reader.

2.3. One-parameter families of <S^,°-functions
We shall also meet one-parameter families of (S^-functions in the following sense.

Definition 2.7 Let o- = ((T^) £ 7Z be such that

VmeN* ,V?e { ! , . . . , m},^"^) > 1.

<S^^(^ x [0,1]) is the set of sequences (a^) ofC00 functions a^ : Q7" x [0,1] -)• R
such that

Vfc > 1 , V ^ € {0,l},3C^>0,Vm6N\{0},

V(.r, 0) 6 ̂ (m) x [0, l],Vu = (m,..., Uk) € (R"1)'.

K^V^^^^)^! ® ... 0 Uk}\ ̂  Ck,e\u\p,p (2.4)

for any (pi,..., pk) <= [1, +00]^ and any (pi,..., pk) € (T^"^ such that

1 1 , 1
— + . . . + — = 1, pi . . . pk = -7-
Pi Pfc o"

To make it short, we impose that the functions of the family are ^-functions
uniformly with respect to 0, as well as their derivatives with respect to 0, for which
moreover we ask for a gain of a in the estimates. We also use one-parameter families
of ^-functions, but we omit the definition here.
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2.4. Differential calculus for ^-functions
The standard function classes we have defined inherit a very natural calculus

(see [Sj3]). We list here the properties of one-parameter families of (S-functions that
we will need later on.

Proposition 2.8 When u is a S^ -function in Q x [0,1], so is An.

The proof of this property is based on the following (classical?) lemma which is
also of independent interest.

Lemma 2.9 If A belongs to MmW, then |tr(A)| < ||A||^oo^i).

Proposition 2.10 Ifu = (u^) e <^°(Q') and ifv = (v^) e <%^ x [0, l],^'),
the function uov = (u^ o v^) belongs to S^(^l x [0,1]).

Proposition 2.11 Suppose u and v are two S^ ̂ -functions in Q. Then the map

(x^)^{u{x,e)^v(x^))

is a S^y. -function. In particular, ifu.v C <%o., 0^) '-̂  (^xu(x,0)^^v(x,0)) is
also a S^g. -function.

Proposition 2.12 Let v = (^(m)), ^(m) : B^(0,R) x [0,1] C R771 -^ R771 be a
(one parameter family of) vector field in <S^. Then for any 0 < R < J?, there
exists a constant T > 0 independent ofm such that the Sow t »—>- ^ [ ' ( x ) ofv^ is
defined on ] - T, T[. Moreover for any t e] - T, T[, the map $< = {^[m}) belongs to
S^{B^K)).

3. WKB constructions
We describe now the formal WKB construction given by B. Helffer in [He4] for

the ground state of Kac's operator. Our aim here is to get a semiclassical expansion
for — l n / 4 ( / i ) , where /^ (h) is the highest eigenvalue of the compact operator
(when suitable assumptions are made) Km{h) whose kernel is

^(^^^^exp-1^ exp-1^12 exp-^. (3.1)

We suppose that V presents a non-degenerate minimum at 0, with say V{0) = 0,
and we try to construct localy near 0 ("inside the well") a WKB expansion for the
eigenfunction associated to ^m (h). We insist that we work here at a formal level,
and that we state only local assumptions. We will examine later on if the objects
we build now are related to the true first eigenfunction and eigenvalue.

Since the highest eigenfunction can be chosen positive (by Krein-Rutman's The-
orem), we put

u,(x) = exp (-^-h}-'\ ̂ (^) ~ f> ,̂(;r),
V " / j=0
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and we want

K^WU^X^^II^WU^X^}.

Writing -In^^/i) == F(h) with F(/i) ~ Zj^oFjh3, we obtain as a starting point
the equation

€FW L K(m){x1 yv h) ̂ -^(-^ih) + ̂  Wv = i- (3-2)u iK. /(-

Since V presents a minimum at 0, we treat the left hand side as a Laplace integral.
Notice that at the level of formal expansions in h, its value depends only on the
germs of V and (j) at 0 (provided V is bounded from below by a positive constant
ouside a neighborhood of 0, but again we work at a formal level here). Our way to
do so is to look for a change of variable y ^ z(x, y; h) which allows us to compute
the left hand side of (3.2) as

om /.
z I -^2//,2- / e-^^dz.

JRrn(4^2)m/2 J^

It is convenient to search for a map z of the form z ( x , y ' , h ) = ̂ 7yf{x,y,h) where
f(x,y',h) ~ 'Lj>ofj(x,y)h3. Taking the jacobian into account, we obtain the fol-
lowing equation

-h-1^ h) + \h-^\x - y\2 + h-1^ h)+v^+v^

- /z-'IVJ^y;^!2 - lndet(V^/(^y;^)) + F{h) - mln2.
(3.3)

We may consider this equality between asymptotic expansions term by term.
Indeed for the term lndet(V^/(^ y; h)) we have:

Lemma 3.1 If h ̂  M{h) is a C°° function from }0,ho] to GL^(R) that has an
asymptotic expansion M(h) ~ Ej>o^^ a.s h -^ 0, then L{h) = IndetM(^) has
an asymptotic expansion as h —> 0, and the coefficient Lh of h1' in this expansion
only depends on the Mj ' s for j < k. More precisely one has LQ = In det MQ and, for
k > 1:

^ = E (rl^ E tvM^M^A^... M^M^
"=1- Jl+J2+---+Jn=k

1. The h-2 term.
We need |Vy/o(a',y)|2 = ^\x - y\2 (an ^-dependent eikonal equation). There are

of course many solutions, and we have to fix Cauchy data. The more convenient
choice is to impose fo(x,x) = 0. Then we get for /o exactly two solutions (x,y} i-)-
^^l^ — 2/12 all(! we choose the only positive one

(^ fo(x,y} = -^\x-y\2.

2. The /r1 term.
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We must have (f>o(y) - ̂ (x) = 2{Vyfo(x, y), Vy/i(:r, y)}, that is, taking (To) into
account,

(7i) (f>o(y) - (f>o(x) = {{y - x}, V,/i(^, y}}.

Notice that at this point neither 0o nor /i are known. However differentiating (7\)
with respect to y and choosing y == x gives also

W) v^-vjiGr.rr).
3. The h° term.
The equation is

W-W+^+^-^y-^^yf^y))^

+\^yfl\2(x,y)-LQ(x,y)+Fo+m\Il^

But Lo(x,y) == — m l n 2 , so that

^(y) - W +v^+vy={(y-^ VJ^, y))+
?0

+|VJl|2(^y)+Fo

Take now y = x in (T^). We get V(x) = \^yf^{x,x) + FQ, and with (T^)

(T^) V^^IV^o^F+Fo.

The reader may recognize here again the usual eikonal equation that one obtains
for example in the WKB construction of a solution for a Schrodinger equation. The
solution of this equation within the class of 5-functions is due to J.Sjostrand (see
[Sjl,2], and also [He-Sj]). Here follow the assumptions:

(Al) V == (V^) is a ^-function in B^(0, R) for some R > 0.

(A2) V(0) == W(0) = 0 and there exist two constants ro > n > 0, a diagonal
matrix D such that D > ro, and such that, for any p € [1, +oo]:

IIV^O) - D\\^P) < ri

A necessary condition for (7^) to have a solution is then of course FQ = 0, and this
condition is also sufficient as can be seen from the following theorem.

Theorem 3.2 Under the assumptions (Al) and (A2), and when FQ = 0, there exist
a positive constant R' < R and a unique non-negative function (J)Q in <S°(£?oc(0? -K'))
which satisfies the eikonal equation (T^) with ^o(O) = 0.

Moreover, the flow <&( of the vector field V^o ^ defined on the whole negative
real axis, and satisfies the following estimates of 1-standardness: for all k > 0 there
is a constant Ck > 0 such that, for any m, any (14,...,^) € (R771)^ and any
pe [l,+oo],

KV^U^I ® .. .^)lp < C^l0^ (3.4)
for some positive constant C independent ofm.
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We let (f>o be the <S°-function given by the above Theorem. Then (Ti) gives
a unique /i, modulo the normalization condition fi(x,x) = 0. The procedure
continues, giving the <^, the F^ and the fk. At step k we have

2{V(^). V^(a-)) = efc(^) - Fk (3.5)

where e^ is a function that depends only on the /,'s and the (f)j's that we have
already computed:

k
ek(x) = Lk(x,x) - ̂ (^yfj(x,y)^yfk^-A^y)}

3=2 { k -i (3.6)
+2(WoOr),V, {E^yfj-^yfw-j - ̂ -i ^ {x,x)}.

U=i J

For a; = 0 in particular, we obtain

Fk = efc(O) = Lfc(0,0) - EW,(0,0),VJ,+2-,(0,0)). (3.7)
J=2

At last we get the following transport equation for fk+i:

' {(y-x),^yfk+i(x,y)) =gk{x,y)

^ 9k{x,^ = (f>k{y) - MX) - 2(VJi, V,/,)(rr, y)

~^L{yyf3^yfk+l-3}(x,y}+Lk-l{x,y)-Fk,l
J=2

which can be solved uniquely under normalization condition fk+i(x,x) = 0.
In order to get some control on the F^'s as we let the dimension m go to infinity,

we have to prove that the ^'s and the fk's are 5-functions. Theorem 3.2 above
shows that <f>o is a 5-functions. We also have fo(x,y) = ̂ \x - y|2, so that (f^} is
^xre- '̂̂ G1-1"11 when considered as a sequence of functions from (R2)"1 to R.

Looking at (3.5) and (3.8) we see that all we need are the two following results.

Proposition 3.3 Let g = (g^) be a S^-function in B^O, R) x B^O, R). Then
for each m the equation

i {(y-^^yf(m){x,y)}=g(m){x,y)
[ /("^)(.r,.E) =0

has a unique solution fm, and / = (/(m)) is a S^-function in B^(0, R) xB^(0, R).

Proposition 3.4 Let <f>o be the solution of the eikonal equation given by Theorem
3.2, and e be a S° -function in Boo(0, R') for some 0 < R' < R, with e(0) = 0. Then
for each m the equation

f (V^^.V^.r.^e^)
[ (^(O) = 0

has a unique solution (f)"1, and (f) = ((^m)) is an S°-function in B^{0, R').
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These two propositions can be proved the same way using the properties of the
flow of each of the vector fields involved. Actually what we need is an estimate like
(3.4), which holds also for the flow of {(y - x), Vy). Summing up the results of this
Section we can state the

Theorem 3.5 Suppose V satisfies assumptions (Al) and (A2) for some R > 0.
Then there exists an 0 < Rf < R, and For each m a unique sequence of real numbers
(F/^), a unique sequence ofC°° functions (fj^) on (B^(0,J?'))2 and a unique
sequence ofC°° functions (^m)) on B^(0,R) such that

1. (f)Q == ( ^^ is the function given by Theorem 3.2,

2. fj{x,x) = 0 for all j C N,

3. Equation (3.3) holds at the level of asymptotic expansions in h.

Moreover for each j, the function ̂  = (^m)) is a S^ function in B^{0, K), and
the function f, = (/j^) is a S^-function in B^(0, R') x B^(0, R').

As an immediate consequence we have the

Corollary 3.6 ([He4, Theorem 10.1]) Under the assumptions (Al) and (A2), for
any k there exits a constant Ck > 0 such that

VmeNMF^I <Ckm

Proof: Recall that
F^ =L(im)^0)-D(im)^0)

where L^ is defined in Lemma 3.1:

^M = E (::1)^ E tr(M^...M,J
n=l Jl+j2+...+Jn=A;

with Mj = V^/J^,?/), and Z^ is given by

D^^y} = E^J^^^)^,/^^^).
J=2

With Lemma 2.9 we have first, for any [x, y ) e B^{0,K) x B^{0,R'),

\L^y)\ < ^2- ^ \^W,...M^^^
n=l Jl+J2+-..+Jn=k

k cyn

^ m'E— E I^A-.-VJ^^oo). (3.9)
"=1 Jl+}'2+...+Jn=k
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But since all the //s are standard, there exists for any j a constant Cj > 0, inde-
pendent of (re, y) and m such that

IV^^y))!^^)^^.

Thus for some Ck > 0 independent of (x, y) and m, we have \Lh(x, y)\ < C^m. Now
Holder's inequality gives for D^\

|(V^O,0),VJ^_,(0,0))1 < IV^MMVJ^L.Mloo

< mlVJ^O^IJV^LA0)!-

The standardness of the //s ensures the existence of constants Cj > 0, independent
of m such that |Vy/J (0,0) |oo < Cj, and the corollary follows easily, n

4. A formal asymptotic expansion
So far we have proved that the sequences {F^ /m)rn are bounded as m —> oo,

and we want now to show that they converge. We recall that the potentials we have
in mind can be written as

m
v(x) = ]L ̂ ) + w(x^ ^-+1)

j=l

and our study will now strongly rely on this particular form.
Let us first consider the case where w = 0 (no interaction). For each fixed n we

write V^eV^ the function on R714-771 defined by

V^QV^(X^X^ . . . X n , Xn^ . . . Xm+n) =

V^(X^X^ . . .Xn) + V^\Xn^ . . . X^n)
(4.1)

In that case we get immediately

V^^V^ix) = V^^^x) (4.2)

Then, and because we have uniqueness at each step of the procedure, it is straight-
forward that if we denote by f^ , <%1 and F^ the objects which were defined
in Section 3 but now for the standard potential In = (V^<3)V^)rn, we get

^m,n) ̂  fW^^^n) ̂  ̂ )̂ n)

^(w)

and Ffc(m'") = F^+F^. Thus in that case -f— = F^. When w is not identicallyk k k m k

0, (4.2) does not hold anymore, but

^(m,n)^ ;̂  v'(^+")(a.) - ̂ ("^•(^(.r)
=w(Xn,Xn+l)+w{Xm+n^i)-w{Xn,Xi)-w(Xm+n-Xn+l)
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and we see that the analysis will not be too different from the previous no-interaction
case. We introduce a sequence of one-parameter family of standard potentials (Vn e)n
where Vn,e is defined for 0 e [0,1] by:

V^W = OV^^x) + (1 - 9}V^@V^\x}^ x e R^ (4.4)

and we want to obtain the result for the case with interaction (0 = 1) by interpola-
tion from the case with partial decoupling (6 = 0). Notice that

Vff = V^^ +0^(m-n\9QV^m) = ̂ n),

Our first task is to go back to the WKB constructions of Section 3 for this sequence
of one-parameter family of ^-potential (V^e)- Here follow our precise assumptions.

For each n e N we let 7Z71 = {^n^-m))m where TZ^) is the set of all functions
^n+m) : { 1 , . . . , m + n} -> R-^ such that for all j e { 1 , . . . , m + n},

p(n+m)/ -\
e-^ < pn { J ) < ea

~ P^U+1)-

and
^.P^jm+n) ^ p^\n}

- ^+m^+l) < e ' e ^W^w^
for some a > 0.

We denote by On the weight in 7^ defined by

^-^m = <f e^^1-^ when 1 < 3 < n
u ) \ 1 when j > n

We shall suppose that the potential V satisfies the following assumptions

(Bl) For each fixed n, V^e = (V^) belongs to S^n^ (B^(0, R) x [0,1]). More-
over the constants in the estimates of standardness (see (2.4)) can be chosen
independent of n.

(B2) For all 0 e [0,1] and any n, ^(O) = W^(0) = 0. Moreover there exist two
constants ro > n > 0 such that for all 0 C [0,1] and any n there is a diagonal
matrix Dn,e such that Dn,e > ro and for any p e [1, 4-oo], any p e TV:

\\^\n^}-D^e\\c(^<^

Notice that for n = 0 these assumptions are precisely those of Section 3. First
we can prove as in Theorem 3.2, the existence of a unique solution of the eikonal
equation in this class of functions. Then, as in Section 3, we can obtain uniform
estimates of standardness for all the functions we have defined there. The following
theorem is really what will enable us to prove the forthcoming results in a quite
elementary way.
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Theorem 4.1 Suppose the assumptions (Bl) and (B2) are satisfied. Then the set of
functions f^^ defined as above for V = V^e is a subset of S^ (B^(0, R') x [0,1]))
for some 0 < R < R, uniformly bounded with respect ton.

Now we add an assumption about the isotropy of the interaction which is natural
in the framework of statistical mechanics:

(B3) For all m, and for all x = {x^,x^ . . . , Xm) £ R^ the function V^ satisfies

V(x^,X^...,Xm) = V(Xm,Xi,X'2,...,Xm-l)

Under this assumption, the first eigenfunction ofKac's operator, which is simple,
must have the same property. Thus we can search for a u^^x, h) = exp(-(/)(x, h ) / h )
having the invariance property. Then the fn^k (in fact those written in Section 3) are
also invariant by circular shift of the coordinates. This fact is an easy consequence
of the uniqueness result in Theorem 3.5. At last, we have the

Theorem 4.2 Suppose the assumptions (Bl) to (B3) are satisfied. Then for any
p(-m)

k > 1, the sequence (-^-) converges. Moreover, denoting by -Ah its limit, there
exists a constant Ck > 0 such that

.F^
^—4-Afc l ^Cke-^l2
m

Sketch of proof: We recall that (see Corollary 3.6) F^^ = ^^+771) _ Q^rn)
where

A;
T^(n+m) _ V^/rj r(n+m)/^ ^ ,-, r(n+m) /^ ^\
^k - Z^^yJn^j ^^ ̂ h VWnJ,fc-^2-7(o^ 0))

j=2
k c^s

r-(n+m) _ -s^ ^_ ^ . ,.(7i+m) ^(n+m) ^(n+m) |
^ - 2^ . 2^ l^n^i ^,^2 •••^n^J. \C(^^)

s=l s Ji+j2+...+^=A;

andM^=V^/^(0,0).
In order to illustrate how the standardness properties enters the game, we de-

scribe how to treat the D^s. Under the assumption (B3) we have first

<VJ^m)(0,0),VJ^^^ = m9^y (0,0)^/^^(0,0)

for any i € { 1 , . . . . m}. Since each /^,j is an S^n -function uniformly with respect
to n, we also have,

l^vjy^o)!^^)^^
for some constant Aj independent of m and n. Integrating with respect to 0 € [0,1]
we get

IVJ&^O) - VJ^ (0,0)1^^, < A,

so that for any i e {0,. . . , m + n} we have

^^W, (fj^ - f^^) (0,0)| ^ A,.
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In particular for z < n we obtain

M^O.O) - 9^ (0,0)| ^ ————-. (4.5)
0'n [ 1 )

Then we get

r)(m+n) ^(n)
' k ^k <

A3——\B f^ fn (}}\ 4- -Ak^±±-\^ /-(^n nM . ^^+2-^-4-m^^ IC/!/^^+2-?VU?U7 "•" ~7r7—T—— K7?/,J-i l^U) + -7———^——-

m + n n
k

y^——7—-!^ f^ fn n^l 4-—-^t2^-!^ ^(^^n nM . ^^+2-^
^^^(^^^^^^ + aF Î̂  ^^l + ̂ ^•

Using again the uniform standardness of the /,%, we obtain that for some constant
C > 0 independent of m and n, since ̂ ^{i) > 1,

r^(m+n) ^(n) ^
i^Jfc ^ . . ^^ ^fc <
m + n n ' - ̂ ^(z)

With our choice for <jn, choosing i = [n/2], we obtain

r^(m+n) ^(n)

————--^Ce-0"/2. (4.6)r) -4- D T) ' — v - 1 - " ' /m + n n

-D^.
This shows that (-^-)n is a Cauchy sequence and gives the expected control on the
speed of convergence. The other term L^ can be handled with similar arguments
(see the proof of Corollary 3.6). Q

5. Estimates for the thermodynamic limit
We now want to obtain estimates on the thermodynamic limit

A(/i)=- lim ^^^
m-^+oo rn

of the true first eigenvalue of Kac's operator. We suppose now that these quantities
are well-defined (see [He2] for example), and that assumptions (Bl) to (B3) hold.
We follow a classical procedure: with the formal WKB solution that we have built,
we can define approximate solutions considering finite sums: for each N C N we let
u^ be the function defined on Q = Boo(0, R1) by

{x)=e-^^h^N(x^)=^^{x)h^^^ - .-̂

7=0

and the ^s are the functions we define on Boo(0, 7?') in Section 3. We define also

N
\^^^e-^W/^F-^W^^F^
j=o
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With the min-max principle it is immediately clear that since //"^ is the highest
eigenvalue of K^ as an operator on Z/^R771), we have

^m) 1 (J^u )̂
m ~ m (u^u^)

where we let K^ be the same operator K but acting on L2^). Computing the
right-hand side and letting m —> oo we get

Proposition 5.1 There is an ho > 0 such that, for any N € N there exists a
constant CN > 0 such that,

N-l
\/h €]0, ho], A(h) > ̂  ^h3 - C^.

j=0

Proof: Considering the linear combination of equations (To) to (T/v+i) which is
obtained multiplying (Tj) by /^~2, we get

-yQ/, h) + ̂ (x, h) - ̂  - ̂  - ̂ \x - y\2 =

-|VJjv+l(^2/^)|2-FN-l(/^)+log|detV^/N-l(^y^)|+mln2

where we let also f N ( x , y , h) = Y^Ijf=ofj(x,y)h3. Thus

K^uN{x,h)=e-FN~^uN{x,h)x

x WY^ L ̂ ^^ I det V,/^1 (.,,,,) \dy.

We put z(x, y , h) = \7yfN+l(x, y , h) in the integral above and we get

K^ir A) - '-^"""•'"(^A) r ̂ ^.f-'^y^wu ^,H)- ^^ j^ |detV;,/''+l(.l:,!/(^),/l)|

where Q(.r, h) is the image of f2 under the map y »-> z{x^ y , h). Notice that the map z
is a C^-diffeomorphism in Boo(0, R) for any h small enough since V2./^""1^ y, /i) ==y yL! + 0{h) or, more precisely,

IV^-^,^) - |j|̂ ,̂ ) < Ch (5.1)

for some C > 0 independent of m. We also have for some C > 0 independent of m

/detV2^-1^^),/^,^
In ———" — , ,——, , . < mCh (5.2)

' \det^yN^{x.y{z),h))l- v /

Indeed, writing

L^ := V2^"-1^^) + ^(V^/^^^./i)^ + V^/^1^^^)^^)
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we have

, /det^2fN-l(x,y,h)\ yi ri
^idetV^L,.))^ ̂ etTO))^ tr((^)-^))^.

With Lemma 2.9, since

l^)kwi) < ̂ l^)lr(Woo) ^ ̂ ^N

for some C > 0 independent of m, and using also (5.1), we get (5.2).
We have proved that

(K^u^u^) > e-^W-^ f u^h} I e-^2 dzdx

J^ Jfl(x,h) (TT/l2)771/2

We will obtain a lower bound for the inner integral if we integrate on a ball Boo(0, r)
contained in all the fl(x, h) for x € Q and h small enough. That such a ball exists
follows easily from the uniform estimates on z and z~1 we mentioned above (see
(5.1)). With that choice of domain we get, for some e > 0,

{K^U^UN} ̂  e-^-^-^d-e-^r f u^h)dx
Jfl

so that
//(m) 1

log—— > - (-Fyv-i(/z) - mCh1^ + log(l - e-^2)^)m m v v / /
and the proposition follows letting m —)- +00. D

It would be quite natural that a similar upper bound held for the thermodynamic
limit, at least when the potential V is globally strictly convex. At this time however
we were not able to get such a result. To begin with, we will give an upper bound
for the restriction of K to L2^), where Q is the neighborhood of the origin where
we have been able to construct our WKB solution. What is missing then is some
uniform estimate on the decay of the true eigenfunction outside of this neighborhood.

Let us recall that the highest eigenvalue ^^(h) of the positive, compact operator
K^ is precisely its L2 norm (this is part of the Krein-Rutman theorem). We will
use the following version of Schur's lemma, that can be proved along the same lines.

Proposition 5.2 Let Q be an open bounded set in R^, and u a nowhere vanishing
smooth function on Q. Then

ll^ll^^^sup/^lA:^,^!^
xW J^i U[X)

Now let A^(^) be the thermodynamic limit of the first eigenvalue of the operator
K acting on L2^). With the above lemma, and mimicking the proof of Proposition
5.1 we obtain the following result.

Proposition 5.3 There is an ho > 0 such that, for any N G N there exists a
constant CN > 0 such that,

N-l

V/i G]0, /lo], W) < ̂  \,h3 + C^
j=o
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