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GDR 1151 (CNRS)

Many-Body Aspects of Approach to Equilibrium

Eric CARLEN1 M. C. CARVALHO152 Michael Loss1

Abstract
Kinetic theory and approach to equilibrium is usually studied in the realm

of the Boltzmann equation. With a few notable exceptions not much is known
about the solutions of this equation and about its derivation from fundamental
principles. In 1956 Mark Kac introduced a probabilistic model ofN interact-
ing particles. The velocity distribution is governed by a Markov semi group
and the evolution of its single particle marginals is governed (in the infinite
particle limit) by a caricature of the spatially homogeneous Boltzmann equa-
tion. In joint work with Eric Carlen and Maria Carvalho we compute the gap
of the generator of this Markov semigroup and show that the best possible
rate of approach to equilibrium in the Kac model is precisely the one pre-
dicted by the linearized Boltzmann equation. Similar, but less precise results
hold for Maxwellian molecules.

1. Introduction
In 1956 Mark Kac [5] invented a microscopic, linear model, from which the

nonlinear Boltzmann equation describing the evolution of the velocity distribution
for a system of colliding particles could be rigorously derived. Consider N particles
in one dimension that interact through random collisions. We consider the spatially
homogeneous case only, i.e., the case where the particles are uniformly distributed
in configuration space, since our focus, as was Kac's, is on the collision mechanism.

The collisions in the model are binary. When the %-th and j'-th particles collide,
their pre-collisional velocities vi and vj are transformed into the post collisional
velocities

^*(0) = cos(0)v, + sm(0)vj , v](6} = -sm{0)v, + cos(9)vj (1)

for some value of 0, the "scattering angle". Clearly, the total kinetic energy of these
N particles, i.e.,

^Vork partially supported by U.S. National Science Foundation grant DMS 00-70589
'2Work partially supported by CNR-GNFM.
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N

v^Yv2=^=E (2)
1=1

is conserved by these collisions. Denote the sphere defined by (2) by ^"^(v^E").
Notice that the total momentum is not conserved. In one dimension, both momen-
tum and energy conservation would require that either the particles keep their mo-
menta or exchange them, a process that will certainly not be ergodic on SN~1(\/^E).

Kac's model can now be described as follows. Let / e L12(SN~1(^/E)) be a
function and define the operator

-i /*27r

QfW = / „ x E / f("1' •-••".'W. • • • , v ; W , - - - , v » ) d 9 . (3)

^(a)"
It is easily checked that this operator is selfadjoint on ^(^"^(v/i?)), i.e.,

(f,Qg) == (Q/,5) where (•, •) denotes the inner product in L2(SN~1(VE)).
The following expression describes the random collision of these particles as a

time evolution of the initial probability density /o € L2{SN~1(VE))

/(^^[e-^-^f^^t). (4)

The assumptions underlying this model will be discussed in Section 2.
The connection beteen this A^-particle model and kinetic theory; i.e., with the

Boltzmann equation, stems from what Kac called propagation of chaos: It is fairly
obvious that if the initial condition /o in (4) is the product of its marginals, this
property is not shared by /(•, t). However, this is almost true in the limit of infinitely
many particles. More precisely, set E = NT and for any probability distribution /
onSN~l{\/rE)^ define the single particle marginal

A^i) = f fW^s
Jv^-+v%=NT-v^

and more generally, define the k-particle marginal

(5)

/^•••,^)= t fW^SVk) == / fW^-^S (6)
J v 2 , , +...+v'^=NT-v'^——v2/"j+l+•••+"2v=^-.^.-^

for all fixed finite k. The following definition is due to Kac. A sequence of probability
distributions (?7v(fi, • • • , v^) has the Boltzmann Property if

lim ̂ i, • • • , v^ = n î lim g^{v,) . (7)j^, . . . ,^)=n^lim,"^
N—^oo J N—>'oo

Actually, as Maxwell and Boltzmann pointed out, f^{vi^t) (for many purposes)
contains all of the physically relevant information of /(^T,^), where f(ff^t) is given
by (4). Now it follows from (4) that

j-fN{v^t)=[Cf,N]{v^t) (8)Qt
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for some linear operator C. That is, one doesn't have an autonomous evolution
equation for the marginal /^(^i.t). But propagation of the Boltzmann property
would imply that

f^v.w^^f^v^f^w^t) (9)

which does render the evolution equation for /^(^i.t) autonomous, but non-linear.
The key fact, discovered by Kac is that the Boltzmann property is in fact pre-

served under the timeevolution (4). Thus one has the theorem:

THEOREM 1.1 (Propagation of Chaos). Suppose a sequence of distributions
g 1 ^ ^ ! " ' , VN) has the Boltzmann Property, and consider, for some fixed t, its timee-
volved sequence gN(v^ • • . , v^^t). Then g1^^' • • , v^^t) has also the Boltzmann
property and moreover the limit of the singe particle marginal g^°(v^,t) satisfies the
following caricature of the Boltzmann equation

tn^)=
^ f00^ dw f^ d0f(v cos 9 + w sin 0, t}f(-v sin 6 + w cos (?, t) (10)

-2f(v,t)f°^dwf(w,t).

A very simple, but illuminating example is to consider the sequence of probability
distributions CN consisting of the constant function. It has been known at least since
Maxwell that

^c^) = ̂ e-^ = M{v,) (11)

recalling that we set E = NT. Similarly

Jim ,̂...,.,)- (^y^^2^ = n^M(.0 (12)

Thus, the constant function is related to the Maxwell equilibrium distribution
which is clearly a solution of (10).

For a proof of Theorem 1 we refer the reader to [5] and also to [8] and [6]. ^From
now on, unless otherwise mentioned, we refer to equation (10) as the Boltzmann
equation.

The advantages and disadvantages of the Boltzmann equation description and
the N particle description are clear. In the latter case, one has to deal with a large
number of particles while the time evolution is linear. The Boltzmann equation
evolves functions of a single variable only, but with a complicated nonlinearity.
While Kac's model is not derived from physical first principles, it is so far the
simplest multiparticle dynamics rigorously connected with the Boltzmann equation,
and one can regard it, as did Kac, as more fundamental since it describes the
evolution of multiparticle correlations.

There have been a number of papers concerning the approach to equlibrium of
solutions of (10). After the work of McKean [8] and Gruenbaum [7], it was shown
in [2] that for a large class of initial conditions

||/(•,f)-A/(^)||^<C,e-( l-£)Al( (13)
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for any e > 0. The constant Ai = 1/2 is the gap of the linearized collision operator.
This operator is quite easily obtained by perturbing the solution of the Boizmann
equation about the Maxwellian, i.e., set

f{v)=M{v)(l+eh(v)) (14)

and expand.
It is reasonable to expect that the resulting linear operator should describe the

solution for the Boltzmann equation reasonably well for initial conditions that are
sufficiently close to the equilibrium. Thus the approach to equilibrium should be
goverend by the first nonzero eigenvalue Ai of this operator which is 1/2. Thus, the
result of [2] is in some sense optimal. Not only is the linearized Boltzmann equation
a good approximation close to the equilibrium but reasonable initial condition get
driven close to the equilibrium with about the same rate.

It is therefore natural to investigate this question for the Kac model. In what
sense should we study the approach to equilibrium? From a functional analysis point
of view it is natural to consider the L2 norm. It is easy to see that the semigroup
(4) is ergodic, i.e., the largest eigenvalue of Q is one, it is nondegenerate and its
eigenfuntion is the constant function. Thus, any initial condition will tend to this
equlibrium state. Using the spectral theorem the rate of this approach is given by

W)-^< e-^H^(O)-^ (15)

where cf) is the average of (j) (which is independent of t) and \^ is the smallest nonzero
eigenvalues of the operator N(I — Q), also called the gap of NQ.

The problem is now that the gap \^ is a function of N . It was conjectured by
Kac that this function has a limit as N —> oo which is strictly positive. In section 3
we shall compute this number explicitely and show that it coincides with Ai. Thus
we have in the limit as N —^ oo

THEOREM 1.2 (Approach to equilibrium). For any initial condition (/) in
L2^-1^)) we have that

||^)-^||2< e-^||0(0)-^. (16)

In particular the rate does not depend on the energy and the particle number.

There were a number of results in this direction. In particular, Elise Janvresse [4]
was the first to prove Kac's conjecture. She did so using using H.T. Yau's Martingale
method. This method involves an induction on 7V, as does ours, but the nature of
the induction is rather different and requires rather complicated estimates which
preclude an quantitative estimate on the gap. An earlier result is due to Diaconis
and Saloff-Coste [3], who proved that the second lowest eigenvalue of I — Q is
bounded below by c / N 3 . In [3] it was also announced that Maslin has computed
the gap precisely (as we do) using representation theory.

In the next section we give a brief description of Kac's model. In section 3 we
give a short proof of Theorem 2 and in section 4 we mention some further results that
can be proved by our methods such as random collision of Maxwellian molecules.
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2. The Kac model
Kac's model cannot be considered as a fundamental model in that it has not

been derived from first principles. It's justification is a-posteriori through the con-
nection with the Boltzmann equation, as described in Theorem 1.1. However, it
is enlightening to give an explanation of some of the heuristics that motivate the
introduction of this model.

We consider N particles moving in one dimension undergoing random collisions.
Suppose that at a given moment these particles have velocity v == (?;i, • - • , vp^). We
pick any pair of particles at random, say (%, j ) with equal probability. Then their
velocities after the collision are given by (1) with equal probability for all angles 0.
More formally, consider a test function ^f(v) and its expectation value

ww=j—'E^/^^---,vm---^̂{0)^'^VN)d0=Q^(v)

\ 2 /
17)

This is the expected value of ^ after one collision, for given velocities v.
Note that three particle collisions are not considered in this model although their

contribution to equilibration may be significant in reality.
It is now fairly straightforward to calculate the probabilities for v(k), the veloc-

ities after k collisions. Certainly

E[^{v(k))} =E[E{^(Wk - 1) = v}} = E[Q^(v{k - 1))] , (18)

i.e., we take first the expection given that the random variable ff(k — 1) == v and
then the expectaion value with respect to v{k — 1). Thus

E[^(v(k))}=E[Q^(v)] . (19)

If we denote the probability distribution of v(k) by fk{v) we obtain that

f ^{^(^-^3= f f^Q^W^-^S , (20)
Js^-^ Js^-^

and hence, since ^ is arbitrary,

A^-O'/o^). (21)

A further assumption involves the distribution of the collisions in time. We
assume first of all that each particle interacts with an environment that consists
of other particles whose motions are independent of the given particle. This is of
course not the case, but does become more and more reasonable as N increases.

Now assume that the collision times for a single particle interacting with its envi-
ronment are exponentially distributed, i.e., the waiting time Tf, for the kth particle
between any two consecutive collisions is a random variable whose distribution is
given by

P[T, > t}= e-^ . (22)
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The time r is the first average collision time for a particle interacting with with a
random environment. Under the assumptions made above, the Tk are independently
and identically distributed, and hence ifT denotes the waiting time for any collision
to occur,

P[T > t] = P[min{ri,..., T^} > t}= e-^ . (23)

That is, the rate at which collisions occur will be proportional to N.
Thus, the probability of having velocities v after exactly k collisions in the time

interval [0, t] is given by

^-kNt/Tfk

-J^-Q'W . (24)

and finally the probability of having velocities v after any number of collisions is
00 - k N t / r ^ k

E -^Q'W = e-^-^M.) . (25)
k=0

^From now on we set r = 1.

3. Approach to equilibrium
In this section we sketch a proof of Theorem 2. In order to avoid technicalities,

we restrict ourselves to the physically interesting case where the probability distri-
butions are symmetric functions of the particle labels. For the general case we refer
the reader to [1].

THEOREM 3.1 (The gap for Q). The gap A^v ofQ is given by

N+2
AN = 2N(N - 1) - (26)

and the corresponding eig en function, which is unique up to a constant multiple, is
given by

^-EI^-MA^^•1-A^T2)- (27)
J=l v /

Certainly, this result gives as N —> oo the second eigenvalue for the linearized
Boltzmann equation. Moreover, if one sets E = NT as before and if one normal-
izes u, its marginal tends to the corresponding eigenfunction, i.e., the fourth order
Hermite polynomial times a Gaussian as N —^ oo.

It is easy to see that the spectrum of Q is independent of E and hence we
choose E == 1. It is a fairly simple calculation to verfy that the function u is indeed
an eigenfunction of Q with the eigenvalue 1 - Ayv. This eigenfuction is special
in the sense that it is a sum of functions of a single variable. Most of the other
eigenfunctions are not of this type.
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Consider the operator

Pi : L^-1) -^ L2^-1) (28)

given by

plm = ,^ ^ ^———2MT72 / /^)d^5 (29)
j^-^^l - ̂ )|1/2 JyJ4-...+^=l-^

and in a similar fashion we define Pk. Clearly P^ = Pk and P^ = Pk.

LEMMA 3.2. Denote the gap of the operator

îS (30)j=i
by AN. Then

Ayv > A^v-iA^v (31)

Proo/. Define the operators

p^^)=^/7 ^ / (^.•••^z*W.• t•^;W.••^^)^ (32)

and note that

o-T^vE^- <33)
( 2 ) •"

Further, consider

^-TN^ E p- f34'
i<J,i,^fc

\ z /

and note that

Q = ^Qk . (35)

For any function / G L2(5A^-1), orthogonal to the constant function we compute

1 N

(/, Q/) = 1y E (^ - p^ ̂ ^ - p^)) + (/' P^ • (36)
' ^=i

We have used the fact that PkQk = Pk- The function f-Pkf € L^^^-^^/l - v^))
is orthogonal to the constant function for every value of Vk. Since the spectrum of
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Qk does not depend on the radius of the sphere S^"2^! - z;j) it follows from (36)
that

1 N N

^ E (f - p^ W - W) ̂  (1 - A^)- ̂  ||/ - P,/|p , (37)
j=i .,=1

and hence

(/, Qf) < (1 - A^_0||/||2 + A^ (/, P/) (38)

from which the lemma follows. Q

Lemma 3.2 reduces the problem to the computation of the gap of the operator P,
and this problem can be reduced to a one dimensional one as lemma 3.4 shows. This
one dimensional, purely geometric problem can be described as follows. Denote by
TTk the projection ^(^T) = ̂ . We consider the Hilbert space U of functions defined
on the interval [-1,1] given by the inner product

< f.9>= ( / O T T i . g O T T i ) , (39)

and the operator K defined by the bilinear form

< f,Kg >= (/071-1,50^2) . (40)

Clearly, the largest eigenvalue ofKis one. It is again easy to see that the eigenvalues
of K do not depend on the radius of the sphere, in particular we can choose it to
be NT and let N -> oo. In this limit, the expression (40) tends to the product
of the expectation values of the functions g and / on the real line with respect
to the Gaussian function (11). In other words, the correlation between the random
variables TTi and ̂  disappears as N -> oo. The second eigenvalue of K the measures
how fast this correlation tends to zero as N -> oo. It is this number that ensures
that the gap of Q does not decay faster than I/TV.

There are various ways to analyze the operator K, but the following expression
is most convenient

|^7V-3[ nr
Kc!^ = r^N^T / 9 (YI-^COS^) sin^-3^ . (41)

The lemma below describes all the eigenvalues.

LEMMA 3.3. The operator K maps polynomials of degree n to polynomials of
degree not larger than n and hence the eig en functions are polynomials of degree
n with corresponding eigenvalues a^. For n odd, On = 0, and for n = 2k the
eigenvalues are given by the formula

^k = (-1)'^^ F(l -sm20)ksmN-30d0 . (42)
I'-5 I Jo

In particular |o'2(A-+i)| < \o-2k\ and

Q^=-^-y and 04 =^-^. (43)
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Proof. We only sketch the proof of this easy lemma. The first two assertions are
obvious. Moreover the operator K maps even onto even functions and odd functions
to zero.

Let g^k be an even eigenfunction. Then, after suitable normalization, we can
write this polynomial as g^ = v^+h^v} where h{v) is an even polynomial of degree
at most 2(k - 1). Next, a^v^ + h(v)) = Kg^ = Kv^ + Kh{v), where Kh(v)
has order not more than 2{k - 1). The formula for the nonzero eigenvalues follows,
immediately from the formula of K since Kv^ = a^kV<2k+ lower order where o^ is
given by the formula (43) . The monotonicity follows immediately from (42). D

The next lemma computes the eigenvalues of P in terms of the eigenvalues of
K.

LEMMA 3.4. If \ is an eigenvalue of P then

N - 1
1-A=-^-(1-/.), (44)

where IJL is an eigenvalue of K. In particular the gap of P equals the gap of K
multiplied by (N — 1)/N.

Proof. Let / be an eigenfunction of P with eigenvalue A. Then

1 N

^E^V-^ (45)N ̂  3
j=i

and hence / is of the form

N

f^=Y,9^} • (46)
j-i

Note that it is here that we assume that / is symmetric in the particle labels.
Applying the operator P to both sides of (45) and rearranging terms we obtain
using (46) that

E [^^(^K^) + (^ - A)p(^)1 = 0 . (47)
J=l L J

One is tempted to deduce (44) from (47) directly. However this is not valid, since
single variable functions are not independent on the sphere.

Applying the operator Pi once more to both sides of (47) leeds to

[^^(^-^[^^•'M^ m
It follows from the Lemma 3.3 that the only solution of the equation

A-+^],=0
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is given by the function g(v) = v2 - const. with the constant such that the function
g is orthogonal to the constant function in U. This implies that f{v) = ̂ ^(v2 -
const.) = 0. Thus, we can invert K + -^ and obtain for g the equation

["„ N ( \ ^
\K+W-l[N-x g=o (49)

A simple calculation confirms the lemma.
D

Proof of Theorem 3.1. Combining Lemma 3.2, Lemma 3.3 and Lemma 3.4 we learn
that

N - 1
^N > —^—A^_i(l - 04) . (50)

Each of the operators Pij is a projection and hence Aa = 1. This together with (50)
yields a simple recursion relation that can easily be solved to yield (26) . To see
that the eigenfunction is unique in the class of functions that are symmetric in the
particle labels one notes that any eigenfunction for the second largest eigenvalue of
Q must also be an eigenfunction for the second largest eigenvalue of P. But those
are precisely determined by 0-4 and the corresponding eigenfunction

y4

N2(N + 2)

which yields the theorem. D

4. Extension to Maxwellian molecules
A closer scrutiny of the above proof shows that it is flexible enough to cover

more intricate, models.
Consider again the Kac model, but this time assume that the distribution of the

scattering angle is not uniform but given by the probability measure p{0). Thus the
operator in (3) is replaced by

QfW==-f———'E['p(0}f^--,^(0),---,v](0),---,Vf,)d0. (51)

I 2 ) t<3 °

In order that this operator be selfadjoint we require that p(6} = p{—6}.
The interesting fact is that equation (50) still holds, as can easily be seen. Thus,

after solving the recursion, we obtaing immediately thatN^ >- ̂ y2^ • (52)
The only place where any detail about the collisions enters is in the computation
of A2 which is given by the second largest Fourier coefficient of p. Thus, Kac's
conjecture also holds in this case.
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Another, more interesting model is the following three dimensional one which
is fairly close to a realistic model known as Maxwellian molecules. Consider again
randomly colliding particles in three dimensions. The scattering map is now given
by

^*(o;) = Vi - uj • (vi - Vj)uj ^(u) = Vj + LJ ' (vi - Vj)cj , (53)

for uj € S2. Clearly, the total energy and the total momentum are conserved and
we set the total energy equals to E and the total momentum equals to 0. Denote
by P the set of all velocities satisfying the momentum condition. If we set

M3^-4 = 53^-1 n P (54)

then we can define the Hilbert space L^M3^-4; d^-^S) where the measure d3N~4S
is the measure induced from the Lebesgue measure on JZ3^.

In the same fashion as before we define

^^(^-^f/^i,...^;^),...^;^),...,^)^, (55)

and

Q-TWX^^' (56)N
2

ZJ •

z<3

Again this operator has 1 as its largest eigenvalue. Its unique eigenfunction is the
constant function. We can prove [1]

THEOREM 4.1. The gap A^ ofQ satisfies the estimate

AN > ̂  (57)

for some universal constant c.

The proof of this theorem follows along the same lines as the one for the Kac
model, i.e., the problem is split into a purely geometric part and a purely dynamic
part. The estimates, however, are more complicated.
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