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Journees Equations aux derivees partielles
Nantes, 5-9 juin 2000
GDR 1151 (CNRS)

Essential self-adjointness of symmetric linear
relations associated to first order systems

Matthias LESCH
Abstract

The purpose of this note is to present several criteria for essential self-
adjointness. The method is based on ideas due to Shubin.

This note is divided into two parts. The first part deals with symmetric
first order systems on the line in the most general setting. Such a symmetric
first order system of differential equations gives rise naturally to a symmetric
linear relation in a Hilbert space. In this case even regularity is nontrivial.
We will announce a regularity result and discuss criteria for essential self-
adjointness of such systems. A byproduct of the regularity result is a short
proof of a result due to Kogan and Rofe-Beketov [8]: the so-called formal
deficiency indices of a symmetric first order system are locally constant on
C \ R. The regularity and its corollary are based on joint work with Mark
Malamud. Details will be published elsewhere.

In the second part we consider a complete Riemannian manifold, M, and
a first order differential operator, D : C§°(E) —> C^°(F)^ acting between
sections of the hermitian vector bundles E ^ F . Moreover, let V : C°°(E) —>
L^{E} be a self-adjoint zero order differential operator. We give a sufficient
condition for the Schrodinger operator H == DtD + V to be essentially self-
adjoint. This generalizes recent work of I. Oleinik [11, 12, 13], M. Shubin
[16, 17], and M. Braverman [2].

We essentially use the method of Shubin. Our presentation shows that
there is a close link between Shubin's self - adjointness condition for the
Schrodinger operator and ChernofTs self-adjointness condition for powers of
first order operators.

We also discuss non-elliptic operators. However, in this case we need an
additional assumption. We conjecture that the additional assumption turns
out to be obsolete in general.

The criteria we are going to present in the first and second part of this
note are very closely related. In fact, after we had done the second part, we
saw that the theory can be extended to symmetric linear relations associated
to symmetric first order systems.

MSC 2000 : Primary 34L05, Secondary 35P05, 58G25
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1. First order systems on the line
Let I C R be an interval. We consider a first order system

J(x)^+B(x)f{x)=^{x)g{x), (1.1)

where

J C AC(J,M(n,C)), J(x) = -J(rr)*, detJ(x) ̂  0, for x e J,
B G L^(Z, M(n, C)), B{x) = £?(rr)* - J'(rr), for x C 7, (1.2)
JT € L^(J, M(n, C)), ^f(x) = ̂ {x}\ J^(x) > 0, for x e I .

Here, M(n,C) denotes the set of complex n x n matrices and AC(J,M(n,C)) the
set of absolute continuous functions with values in M(n,C).

We need some more notation: we equip Co(J,C1), the space of continuous C71-
valued functions with compact support, with the (semidefinite) scalar product

(/^ := ! f(xY^(x)g(x)dx^ (1.3)

and denote by ^^(1) the completion of Co^C1) with respect to the semi-norm
induced by (1.3). Alternatively J^(J) can be described as the set of Borel-
measurable C^-valued functions satisfying {f,f).// :== ^ f(xYJ^(x)f(x)dx < oo.
As usual, one puts L^{I) '.= ^ { I ) / ( f e ̂ {I)\ \\f\\^ = 0}. L^(J) is a Hilbert
space. For a function / C ^]y[I} we will denote by / the corresponding class in
L\[I\ If J^[x) is invertible a.e. then a class / contains at most one continuous
representative, hence if j^(rr) is invertible a.e. and / is continuous we will not
distinguish between / and /.

Assume for the moment that Jif(x) is invertible for almost all x € I and
J^(x)~~1 € L^(7,M(n,C)). Then (1.1) induces a symmetric operator

^^f^) c-4'
in the Hilbert space L\[l} with domain S(L) = ACcomp^C71). The symmetry is
implied by B = B* - J ' and J^* = ̂ . However, the interesting case is the one
where j^[x} is singular. If J^(x) is singular then (1.1) will in general neither define
an operator nor will it be densely defined. Rather it will give rise to a symmetric
linear relation^ whose definition we recall for the reader's convenience:



Definition 1.1. Let ^ be a linear space equipped with a positive semidefinite her-
mitian sesqui-linear form (., •}. A linear subspace y c f) x S) is called a symmetric
linear relation (s.l.r.) if for {fj,g,} € ^,j = 1,2, one has (/i,^) == (/^).

For example, the graph of an (unbounded) symmetric operator in ^ is a s 1 r
The system (1.1) defines a symmetric linear relation, J-^, in ^(1) as follows-
{/, 9} e ^nin if and only i f / e ACcomp(/, C1), g 6 -^^p(7) and Jf'+Bf = ̂ g.

^nun induces a symmetric linear relation, S^, in L^(7) in a fairlyjtraightfor-
ward way: {/, g} <= ^nun if and only if there exist representatives / e f g e a such
^at {/,5}e^n,n.

Looking at first order systems seems to be rather special. Therefore, it is impor-
tant to note that an arbitrary symmetric n^-order system is unitarily equivalent to
a symmetric first order system ([8], [14]). In most cases, however, the Hamiltonian
^P of this first order system will be singular. As an example we show how a second
order Sturm-Liouville equation can be transformed into a system of the form (I.I):

Example 1.2. We consider a Sturm-Liouville type equation

'dx^^dx^ + ̂ W = ̂ Wx), (1.5)

where A,y,J^6 L^(J,M(n,C)) and A(x) is positive definite for all x € I . The
system (1.5) defines a symmetric linear relation as follows: {u, -y} e ^rnm if and only
ifne AC (/,€) A-^z. e ACeo^p(/.e). -u e ^comp(^) and (1.5) holds. As
before, let S^n := {{u, v} \ [u, v} e ̂ in}.

^ Note that if v € ̂ ^(1) then. since ̂  e L^(J,M(n.C)), J^fv belongs to
^compC^C"). Consequently, {(u,L4-1^), (u,0)} is m the symmetric linear rela-
tion, J^niin, induced by the system

( ° 'V^Y-^ 0 \(^\ (^ °\f9i\
[z 0; UJ + 10 -A) [f,) - [ 0 oj ̂ J • (l•6)

Conversely, if {(/i,/a), (pi,^)} € ^nin then {f,,g,} e ^,n. It is also clear that
the Hilbert spaces L^(I) and L^J), jF= (^ 0\ are canonically isomorphic.

Hence the s.l.r. S^ and S^n in L^(J) resp. L2^/) are unitarily equivalent.
If ^{x) is invertible and ^(x)-1 € L^{I, M(n, C)) then 5^n is (the graph_of)

a densely defined symmetric operator in the Hilbert space L\{I}. However, J^{x}
is singular everywhere.

The following example shows that the domain of the s.l.r. S^n can be rather
small:

Example 1.3. Let B = 0,J = (\ ̂  , and ^(x) = g ^. If {/,,} e ̂

then /2 = g^f[ = 0, and since / is absolute continuous with compact support we
infer /i = 0. Hence ̂ f = 0 and thus / = 0. Thus, the domain of S^n is {0}.



The system (1.1) can be simplified further and put into canonical form. Details
of the construction can be found in [8, Sec. 1.3] or [10]. For the moment denote
by y(J,B,Jif) the s.l.r. induced by the system (1.1). A "gauge transformation"
U 6 AC(J, GL(n, C)) induces a unitary map

^u : ̂  { I ) -> ̂ U), / ̂  U^f, J^:= U^U, (1.7)

and a simple computation shows that

/̂̂ U B, J^)% = ^{^ B, J^) (1.8)

where

J ^ U ' J U , B=[/*<W+£7*B[7, ^=U^U. (1.9)

It can be shown that the gauge transformation U can be chosen in such a way that
J is constant and B = 0. Such a system is called "canonical".

Pick XQ C I and let V( . ,A) : I -^ M(n,C) be the solution of the initial value
problem

J{x}Y'[x^ A) + B{x)Y(x^ \) = \^{x}Y[x, A), Y(x^ A) = In. (1.10)

Here, In denotes the n x n unit matrix. The existence of Y follows from the inte-
grability assumptions in (1.2).

Definition 1.4. The system (1.1) is said to be definite on I if there exists a compact
subinterval IQ C I such that the matrix

/ Y(x, \Y^f(x)Y(x^ X)dx (1.11)
J l o

is invertible for a A C C.

If the system is definite then (1.11) is invertible for all A € C [8, Theorem 1.1].
The property of a system (1.1) to be definite is gauge invariant. There is a simple
criterion for definiteness: namely, if there exists a compact subinterval Jo C I such
that ^ 3V is invertible. then the system is definite. For a canonical system (B = 0)
this criterion is also necessary. In general, the definiteness will also depend on J
and B.

Some bibliographic comments are in order, however we do not claim to give a
complete historical account: A standard reference for symmetric linear relations
arising from symmetric first order systems is the thesis of Orcutt [14], which un-
fortunately has not been published. Other references are [I], [9], [4]. First order
systems have been studied extensively in [8]. Canonical systems are discussed in
great detail in [5].
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1.1. Regularity of the maximal relation
We consider again the system (1.1), (1.2).

Definition 1.5. We denote by S the closure in L\\I} x L\\T) of 5mm and by
5max •= 5* - {{/^} € L\\l} x L^(I)\{f^v} = {g^u} for all {u^v} € 5} the
adjoint of S. Moreover, let

^max - {{/,9} /^ € ^COJC AC^C^J/'+B/ = ̂ 5}.

The notation c^max is deliberately chosen: if 5 is the graph of a symmetric
first order operator as in (1.4) then it is well-known that each pair {f^} has
representatives {f,g} € e^max- It is exaggerating but true that this follows from
elliptic regularity. For the system (1.1) the same statement holds true, although it
is less obvious:

Theorem 1.6 (Regularity Theorem). Let {/,^} 6 5max- Then for each repre-
sentative g € ]j there exists f C / such that {/,?} € J^max-

For definite systems this has been proved by Orcutt [14, Thm. 11.2.6 and Thm.
IV.2.5]. Another proof for (not necessarily definite) 2 x 2 canonical systems was
given by I.S. Kac [7] in the deposited but unpublished elaboration of [6]. The proof
of a more detailed version of Theorem 1.6 will be published in [10, Sec. 2].

We present an application of the regularity theorem: Let

^(5) •= {f e J^(J) n AC(J, C71) J f + Bf = A^"/}, (1.12)
and denote by ^^(S) :== dim<^(5') the formal deficiency indices of the system
(1.1). Furthermore, for a symmetric linear relation A in the Hilbert space f) we
denote by

^(A) := {/ G f) {/, \f} € A*}, A e C, (1.13)

the defect subspace and by A^(A) := dimE^i(A) the deficiency indices of A. It is
well-known that

dim^(A) = A^(A), A e C+ := [z € Z 1m z > 0}. (1.14)

Namely, the relation A* - A is semi-Fredholm for A C C \ R. Thus dimE^A) is
locally constant on C \ R and therefore dimE^\{A) = dim£^(A) for A C C+.

The same statement for the dimensions of the formal defect subspaces <^\(5) is
true but less trivial. The only proof we know of is due to Kogan and Rofe-Beketov
[8, Sec. 2]. It uses methods from complex analysis and is rather technical. Using
Theorem 1.6 we can give a painless proof of this fact:

Theorem 1.7 ([8, Theorem 2.1], [10, Sec. 2]). Let S be a general symmetric
system (1.1), (1-2) on an interval I C R. If the system is definite or if the interval
is half-closed^ i.e. I == [0,a), then

dim^A(5)=dim^(5)=:^l(5), for A e C + .
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Proof. 1. We assume Jirst that the system S is definite. Then the quotient map
^(5) -^ £\(5), / ̂  / is bijective.

Indeed, the injectivity follows immediately from the definition ofdefiniteness. To
prove surjectivity, consider fe E^(S). This means {/ ,A/} € 5max and in view of
Theorem 1.6 there exists / e /, / € AC(/, C^n^ (7) such that Jf+Bf = A^/.
Thus / e E\(S). This proves surjectivity.

Now we have dim^\(S) = d\mE\(S) and in view of (1.14) we reach the conclu-
sion.

2. If S is not definite but I = [0, a) we replace J^ by ^= 3^ + ̂  where \
is the characteristic function of an interval [0, e) C I . The system 5 = S{J, B, J?)
is definite on I and 1. applies. To complete the proof it remains to note that we
obtain a linear isomorphism, <E>, from ^(5) onto S\{S} as follows: for / G S\ (S) let
<!>/ be the solution of the differential equation J y ' + By = Xj^y with $/ \ [e, a) =
f \ [ ^a ) . D

1.2. Essential self-adjointness
In this section we study the system (1.1) on the real line and discuss criteria for

essential self-adjointness. As a motivation, let {f,h} be in the "square" of e^min,
that is there is a g e ^{1) such that {f,g} e ^nin and {g,h} € ^mn. This is
equivalent to the equation

<0 ^n+f 0 B v^-^ °v^,J O) {g) + [B -^) [g ) - [ 0 0 lo (1.15)

with f,g e ACcomp(^,C"),/z € -^^,comp(/)• A second example is the system dis-
cussed in Example 1.2. These examples lead us to consider a first order system

J f ' + B f = J ^ g , (1.16)

where

r - ( o A n ( v B\ ^ (-^ °\ m^
^-t/ 0;' B=[B -A;' ^^\Q o ) - (L17)

A is assumed to be nonnegative. V may be viewed as a "potential" added to
e5^,n. It is clear that L2^!) is canonically isomorphic to L\[].}. We put J^nm =
y{J,B,3V\ For simplicity we will consider the interval R only. For a function
/ € ° |̂r(K) we denote by /i, /2 the first resp. last n components.

We will use several times that if J^(a-) and A{x) are invertible then we can
estimate, for ^, T) e C",

|r |̂ = ||A(.r)l/2^||||A(r^)-l/2J(.K)^^)-l/2^^)l/2^||
(1.18)

^IIA^-'^J^^^-^^IIIA^^IIII^^)1/2^!.
Thus we put

r ( r } - JP^)-172^)-^)-172!!, det(A(x).^(x)) ̂  0,
^v^/ •— } [ L . i y foo, otherwise.
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The self-adjointness criterion we are going to present will depend also on V. We
assume that there exists an absolute continuous function q > 1 on R such that

V > -qJ^. (1.20)

Lemma 1.8. Let f e L^{R),f{x) ;> 0, be a non-negative locally integrable func-
tion. Assume in addition that

Zd:oo

± f(x)dx = +00. (1.21)
,

Then there is a sequence of functions \n ^ ACcomp(R) satisfying

0 ^ Xn < 1, |Xnl < -f(x), lim Xn(x) =1, x C R (1.22)
71 n-»-oo • /

Proof. Let ^ e ^(R) with 0 < ^ < 1, ^(a;) = 1 in a neighborhood of 0 and
|X'| < 1. Then

Xn{x)-.=x(1 t f{s)ds) (1.23)
'n Jo '

does the job. Q

Lemma 1.9 ([16, Lemma 3.1], cf. Proposition 2.8 below). Assume that
/.±oo ^

± / ——dx = oo,
Jo c(x)

and that l^"172^)! ^ C/c{x). Let {f,g} e j^ax. T/ien q-1'2^ e -^(R) and

llg-^llA < 2((i + 2C2)||/||2^+11/11,^1^11^).
Proof. By Lemma 1.8 there are absolute continuous functions \n with 0 < ^n ^ 1,
lim ^n(a;) = 1, and

n—too

[xsw £ n^y (L24)
Put ̂  := Xnq~112' We have

1<(^)| < (1 + C}—— =: C, 1 - . (1.25)
'n / c{x) c(x) '

Then

\\^nh\\\ = ! €WfW{Jf[ + Bf,)(x)dx/it?" 1K

= /' ^(J(a;)/2(^) + B(.T)/2(.r))Vi(^) - 2 /' ̂ (a;)^(2;)/2(^V(^/i(^)^
JlR JR

= f 'Wg,(xY.^(x)f,{x)dx- ( ^{x^f^xYV^f^dx
JR JR

-2 [ ^nWn(x)MxYJ{x)f,(x)dx. (1.26)
JE
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Note that in view of (1.25) the matrices A(x) and ^(x) are invertible if^Qr) ^ 0.
Combining (1.18), (1.20), (1.25), (1.26) and the well-known estimate 2\ab\ < a^+b2

we obtain

\\^nh\\\ ̂  |(€/,<7)^| + ll^172/!^ + 2^||^/2||A||/||^

< 11/ILAII^+ (1 + 2^)||/||^+ Jl|^/2||2^ (L27)

or

11^/2||^ < 2((1 + 2^)||/||^+ 11/11^1^11^). (1.28)

Letting n —^ oo we reach the conclusion. Q

Theorem 1^10 ([16, Theorem I.I], cf. Theorem 2.3 below). On the interval
R let J , B , J ^ be as in (1.17) with A > 0. Let q > 1 be absolute continuous and
V > —q^V. Moreover^ assume that

W ^-V2^)|<-^.dx^ ^^\ - c ( x ) '

[±OQ 1r±oo ^

(2) ± / / \ i /2/ \dx = °°-Jo c{x)ql/2(x)\ cW/W

Then S = iS^J, B, J^7) is essentially self-adjoint.

Proof. By Lemma 1.8 there are absolute continuous functions \n € ACcomp(
0 < Xn < 1, lim Xn[x} = 1, andVn — -L? A11A1 A.n\

n—>oo

\XnW\ ̂  (1.29)nc(.z•)91/2(a;) ' /

Note that, again, ^(x) / 0 implies that A(a-) and ^{x} are invertible. In view of
the regularity Theorem 1.6 it suffices to show for {/,^}, {u,v} € J^ax that

{f,v}={g,u). (1.30)

By dominated convergence we have

^ (^"^'v) - ̂  u)) = </> v} - {g, u}. (1.31)

Integration by parts shows that

{{Xnf,v} - {Xn9.u}) =- [ ^[x}f{xYJ{x}u[x}dx

r (1.32)
=- / X'nW(WJ{x)u2(x)+MxYJ(x)ui(x))dx.

JR

Using (1.18) and Lemma 1.9 this can be estimated by

\{Xnf,v} - (Xn9, U)\ < -'-(ll/lll.^llg-1^! A + \\Q-Kx^^-^n^^l^-'-dl/il^llg-^lA+ir^llAll^lk). (1.33)
I l lI li

and we reach the conclusion. Q
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Remark 1.11. We emphasize that Lemma 1.9, Theorem 1.10 and their proofs are
adapted from a method due to M. Shubin [16] who proved essential self-adjointness
for certain Schrodinger type operators on complete manifolds. A generalization of
Shubin^s method is presented below in the second part of this paper.
We single out some special cases of the previous theorem.
Corollary 1.12. Consider the system 5min = 5(J,B,J^) as in (1.1) on I = R.
Put

_ ^Wxr^W^x)-1^ det(^(:r)) ^0,
C{X) .—— \ .1 • l1-^[ co, otherwise.

Assume
^±00 ^

± / ——cte = +00. (1.35)
Jo ^

Then 5min and 5^ are essentially self-adjoint, i.e. 5min = 5max and S^ =
fC2 \
\0 /max-

This corollary generalizes a result of Sakhnovich [15].

Proof. The essential self-adjointness of 5^ follows, in view of (1.15), from Theorem
1.10 with V = 0, q = 1 and A = J^.

It is easy to see that, as in the case of a symmetric operator, the essential
self-adjointness of the square of a s.l.r. in a Hilbert space implies the essential self-
adjointness of the s.l.r. itself. However, the essential self-adjointness of 5min can
easily be seen directly:

According to Lemma 1.8 let \n ^ ACcompW with 0 < \n < 1, lim ^(.r) == 1,
n—>oo

and

IX'̂ I £ ̂ y. (1-36)

For {f^} € 5max we choose, according to Theorem 1.6, representatives {f,g} C
-^max a^d P^t fn ::= Xnf' Since ̂  vanishes if ^(x) is not invertible the function
\f^J^f(x)~lJf is well-defined. Moreover

hn^Jf^m < f \xM\2f(xrJ(xr^{x)-lJ{x)f{x}dx
<, snpiXnWx))2^,„

3-CM ye

< ^l^ll^w7

hence )(l^{x)~lJf lies in J^(M) and it converges to 0 in Jf^(R). Finally, we
calculate

J^+Bfn=Xn{Jff+Bf)+XlnJf

^^{Xng+x^-'Jf)
=: ̂ n.

Thus {fn.9n} £ ^min and lim { / n ' f f n } = { / ^ f f } ^d the claim is proved. D
n—foo
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Corollary 1.13. Let 5mm be the symmetric linear relation in ^(R) induced by
the Sturm-Liouville type equation

-^(A^)-1-^^)) + V(x)u{x} == J^(x)v(x). (1.37)

That is, {u^ v} C 5min if ̂ d o^ly if there exist u 6 u^ v 6 v such that u^ A~^-j-u G
ACcomp(K,C71)^ 6 ̂ ^p(R) anj (1-37) holds. Here, we assume that A,V,J^G
Lj^(R,M(n,C)), A(:r) %5 positive definite for all x e R, anrf f/zaf ^ere ea:%5fo a72
absolute continuous function q > 1 5^cA </ia^ V > —qJif. Let c(x) be defined by
(1.19). Moreover, assume that

(i) ^-1/2^)|<^.
^±00 1

(2) ± [
Jo

-dx = oo.
/o c(x}q^(x)^ ^-

Then 5min %^ essentially self-adjoint.
Proof. This follows immediately from Theorem 1.10, (1.5), and (1.6). D

Proposition 1.14. Under the assumptions of Theorem 1.10 the system S == 5(J\
B^Jif) is definite.

Proof. Consider / e ̂ |rW n AC(R,C271) satisfying

J / '+B/=0, f r^f=0. (1.38)
JR

We have to show that / = 0. (1.38) translates into

J / {+£? / i -A /2=0 , (1.39)
J /2+5/2+^/1=0, (1.40)

/* A*^/i=0. (1.41)
JR

Note that condition (2) in Theorem 1.10 implies that A(rr) and J^(x) are invert-
ibie on a set of positive Lebesgue measure. Consequently, the systems c^(J,JE?,A),
.V{J, B, ̂ ) are definite.

From Lemma 1.9 and (1.41) we infer H ^ H A = 0. Hence A/2 = 0 a.e. Since
^(J,J3,J^) is definite we infer from (1.39) and (1.41) that /i = 0. In view of
(1.40) and A/2 = 0 a.e. we may apply the definiteness of ^(J.B.A) to conclude
that /2 = 0. D

2. First and second order operators on complete Riemannian
manifolds

Let M be a connected complete Riemannian manifold. Furthermore, let E be a
hermitian vector bundle over M. We denote by ^(E^) the Hilbert space of square
integrable sections of E with respect to the scalar product

{u,v) = f {u{p)^v{p)}E,dvo\(p). (2.1)[ u , v ] = I {u[p),v
hi

X-10
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Note that (2.1) is well-defined also if u is only locally square integrable and v has
compact support, or vice versa. Lj^(£'), L^ (E) denote the space of sections of E
which are locally square integrable resp. square integrable with compact support.
Sometimes it will be convenient to consider distributional sections of E. We denote
by C~°°(E) the (anti)dual space of C^°{E) with respect to the anti-dual pairing
(2.1).

Next we consider a second hermitian vector bundle, F, and a first order differ-
ential operator

D'.C^(E)-^CS°(F). (2.2)

Note that we do not assume D to be elliptic. We denote by Dt the formal adjoint
of D, i.e. for compactly supported sections u € C^°(E),v C C^°(F) one has

{Du,v)= [v.D'u). (2.3)

Thus D, Di extend to maps on distributional sections of £\ F and we will write
Du^ Dtv also if n, v are distributional sections of £', F', resp. (mostly u^ v will at
least be locally square integrable).

Furthermore, let D be the principal symbol of D. Then for u € C~°°{E) and
cf) € C°°(M) one has

D{(J)U) = D{d(/)}u + (f)Du. (2.4)

Remark 2.1. (2.4) holds whenever all ingredients make sense, in particular if u E
L^(E), Du € L^{E) and (f) is a locally Lipschitz function.

Note that the defining relation (2.4) for the principal symbol implies that

^(0=-GD(Or, ^T;M. (2.5)

We consider D as an unbounded operator from L2(E) into L^^F). We denote
by Anin the closure of D and by Anax = (Jr^)* = ((^min)*- In general one has
Dmin $ Anax- Actually, D^m = -Dmax is equivalent to the essential self-adjointness
of the operator

^ 0 D^
,D 0 (2.6)

Next we consider the Schrodinger operator

H := D'D + V, (2.7)

where V € Z^(End(£')) is a locally bounded self-adjoint (i.e. for each p e A/ the
endomorphism V(p) : Ep —> Ep is self-adjoint) potential.

H is a symmetric operator in ^{E) with domain C^°{E). As for D we denote
by H^m the closure of H and 7?max = H * = H^.
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Definition 2.2. Let M be a complete Riemannian manifold and let 0 < Q < 1 be
a locally Lipschitz function. We write

/*00/oo

gds = oo, (2.8)/ gds = oo,

if Jo00^^))!^)!^ = oo for any parametrized curve 7 : [0,oo) -^ M satisfying
^lim 7(t) = oo. The latter limit is taken in the one-point compactification of M, i.e.
7(<t) eventually leaves any compact subset K C M.

Finally, put c(x) := max(l, \D(x)\). c{x) is an upper estimate for the propagation
speed of D. Now we can state the main result of this section:

Theorem 2.3. Let q > 1 be a locally Lipschitz function such that V > —q. More'
over, assume that

(1) c[d(g-1/2)! < C,

/ °° Hf
(2) —— = oo.

c^/q

(3) ifu G Q(H^) then Du e L^{F).

Then the operator H is essentially self-adjoint on C^°{E).

We comment on the assumptions and discuss some special cases:

Remark 2.4. 1. We emphasize, that the method presented here is essentially the
one of Shubin [16, 17], modulo necessary changes due to the more general class of
operators under consideration. We found it however worthwhile to show that in
principle all operators of the form DtD + V can be dealt with in a unified way,
going much beyond the class of Laplace type operators.

Note also the similarity between Theorem 2.3 and Theorem 1.10. Theorem 1.10,
in fact, was inspired by Theorem 2.3.

2. The assumption (3) is automatically fulfilled if DtD is elliptic, or, more
generally, if DiD is elliptic on a "sufficiently large" subset (see Proposition 2.9
below). We tried hard to prove the following conjecture:

Conjecture 2.5. Let T : C^°(E) -^ C^{E) be a first order differential operator
on a Riemannian manifold and assume that T2 is essentially self-adjoint Let u €
LW^u G L^{E}. Then Tu e L^(E).

Let us first comment on why this conjecture is conceivable. If T2 is essentially
self-adjoint then T is also essentially self-adjoint and T2 = T2. Hence, if u C
L2{E),T2ueL2(E) then

u ^ S { T 2 ) = { v ^ L 2 ( E )

= ^(T2) = {v G L\E}
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Consequently, Tu € L2(E). So, if we remove the "loc" subscripts then the state-
ment of the conjecture holds. Now, since T is a differential operator, it is hard to
believe that the validity of the conclusion depends on global properties of u. If one
believes that the statement is a purely local one then it should be true even without
the essential self-adjointness assumption on T2, since every symmetric first order
differential operator T can be altered outside a compact set in such a way that
all powers become essentially self-adjoint (cf. the proof of Proposition 2.9 below).
Maybe it is possible to prove (or disprove) the conjecture by micro-local methods.
This we did not try too hard.

In Proposition 2.11 below it is proved that the conjecture in conjunction with
condition (2) implies condition (3).

3. Let V = 0 and q = 1. Then we obtain the essential self-adjointness of DtD
if f°° ^ = oo. This is exactly ChernofTs condition [3, Thm. 1.3]. Note that if D^
is elliptic then our method of proof is independent of ChernofTs paper. If DtD is
non-elliptic we have to use ChernofTs results in the proof of Proposition 2.9 (and
also in the proof of Proposition 2.11). It is an interesting question whether this
Proposition could be proved by more elementary means.

If D is a generalized Dirac operator then D is elliptic and c = 1. Hence we obtain
the essential self-adjointness of D2 (and thus of D, too). In this case, however, our
proof is very similar to the one of Wolf [18].

4. If c == 1 then Theorem 2.3 contains the main results in [11, 12, 13, 16, 17,
2] as special cases. Note that loc. cit. mostly deal with cases where DtD is a
generalized Laplace operator. In this case, the integrand of {Hu^ v) — (zz, Hv) can
be expressed explicitly in terms of a divergence. These explicit divergence formulas
are used in an essential way. We emphasize that our method works without such
explicit formulas. The substitute for them is a more elaborate use of the calculus of
unbounded operators in Hilbert space.

In particular, we wanted to include all Dirac type operators. For those, of course,
the explicit divergence formulas could be worked out, although it would be somewhat
tedious.

The magnetic Schrodinger operator considered in [17] is a priori not covered by
Theorem 2.3 if the magnetic potential is not smooth. However, if DtD is elliptic,
our proof can easily be adapted to the case that the Oth order part of D is only
Lipschitz. For the sake of a simpler presentation, however, we will confine ourselves
to the case of an operator D with smooth coefficients.

2.1. Some Preparations
(2.3) holds in greater generality:

Lemma 2.6. Letu € ^(Dmax^^omp^) andv G ^ocW such that Dtv e ^ocW-
Then u C ^(^Dmin) ^d

{Du,v)= {u.D^}. (2.10)

Proof, u £ ^(jDmin) follows easily by means of a Friedrich's mollifier constructed in
a neighborhood of the compact support of u.
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Next choose a cut-off function <j> <= C^°(M) with <^» = 1 in a neighborhood of
suppu. Then, 4>v 6 3>{D^} and hence

(Di/, v) = (<f)Du, v)

= (DmmU, (/)V)

=(U.DLM (2.11)
= {u, -D(d(f>Yv + ̂ v)
=(u,DV),

since supp d<f) n supp u = 0. Q

Lemma 2.7 (cf. Lemma 1.8). Let g > I be a locally Lipschitz function on M
with f°° ̂  = oo. Then there is a sequence of Lipschitz functions (<?S»n) with compact
support satisfying

0 < (f>n < 1, |c?<M < —, lim (f>n{x) =1, a- € M. (2.12)
^n n-+oo ' /

Proof. Denote by dg the distance function with respect to the metric g^ = Q~2g.
Then fix 2:0 € M and put P(a-) = c^(a;, a;o). As in [16] one concludes lim P(rc) = oo
and | riP | < g~1. Now choose a cut-off function ^ € ^(R) with 0 < \ < 1 , ^=1
near 0, and |̂ '| ^ 1. Then put

(f>n(x) = X(p^))• (2.13)

<^n obviously has the desired properties. Q

Proposition 2.8. Assume ^a^ J00 ̂  = oo and c|d(9-1/2)! < C. £e^ u e ^(^max)
and Du 6 Lj^(F). r/ien we /lave q-^^Du 6 L^F) and

ll?-172^)! < 2((1 + 2C•2)|H|2 + ||u||||^|l). (2.14)

Proof^ Let 0 < ^ < g-1/2 be a locally Lipschitz function with compact support and
put (7 = supp^c(p)|d^(p)|.

Using Lemma 2.6 we find

(^Du^Du}= [D^^Du.u)

= 2{^b\dv)}Du, u) + {^^Du. u)

= 2(^Dt(dv})Du, u) + (^Hu, u) - (Vwu, ̂ u) (2.15)

^ 2C||^||||^Du|| + ||u||||̂ || + | ̂ u\\2

^ 2011^1111^^11+||u||| |^u||+||u||2 .

Using 1\ab < a2 + b2 the latter can be estimated

II^H2 < (1 + 2C2)! H||2 + }.\\^Duf + \u\\\\Hu\\, (2.16)
2'
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and thus

\\W\2 < 2((1 + 2C2)H|2 + IHHI^Il). (2.17)

We apply Lemma 2.7 with Q = c and obtain a sequence (<^) of Lipschitz functions
(f)n which satisfy (2.12) with Q = c. Putting ̂  = <t>nq~^ we have 0 < ̂  < g-1/2

and

c\d^\<cq-^\d(j)n\+(f>nc\d{q-^}\
<1^ (2.18)

n

Since ^(p) -)- g-1/2^) as n -^ oo we reach the conclusion by invoking the domi-
nated convergence theorem, m

2.2. Proof of the Main Theorem 2.3
Let u, v C ^(^fmax) and let 0 < ( / ) be a Lipschitz function with compact support.

Since q > 1 the condition (2) implies for any curve 7 : [0, oo) as in Definition 2.2
f°° l r ° ° i
/ cMO)^!"^ /„ ^mV^^^- (2•19)

hence we can apply Proposition 2.8 and find that q-^^Du, q-^/^Dv G L2(F). More-
over, since ^ has compact support, we have D(d(/))u 6 ^mp(-F). Also, since V is
locally bounded, D^u, D^v € L^(E). Finally, the latter implies in view of

D^Du = -D(d(f>YDu + ̂ Du e ^(E). (2.20)
Using Lemma 2.6 and Remark 2.1 we calculate

((f)u, D^v) = {D(f>u, Dv)
(2.21)= (D(d</))u, Dv) + {(J)DU, Dv),

and, similarly,

(Z^Du, (f>v) = (Du, D(d<f>)v) + ((f>Du, Dv). (2.22)
Taking differences we obtain

|( ,̂ Hv)-{Hu, (f>v}\ ̂  \(D(d(l>)u, Dv)\ + \{Du, D(d(p)v)\

< supflQ^^^lD^I^I^IKIIg-i^^ij + \\q-^Dv\\). (2-23)
p^M v /

Finally we invoke Lemma 2.7 with Q = cq^2 and choose a sequence of Lipschitz
functions ̂  with compact support satisfying 0 < ̂  < Ijd^ < -1-, lim ^(p) ===
l,p G A/. Then by dominated convergence we have on the one hand n->oc

{(f)nU, HV) - [HU, (/)nV) ——> {u, Hv) - (HU, V), 71 ̂  00, (2.24)

and on the other hand

\^nU.Hv) - (Hu.^v)\ < ̂ Mq-^Du^ + \\q-^Dv\\). (2.25)
i L

This proves the claim.



2.3. On condition (3) and Conjecture 2.5
Proposition 2.9. Assume that there are compact subsets Kn C M such that

(1) Kn C K^,
00

(2) |J Kn = M,
71=1

(3) there is an open neighborhood Un D Kn such that Z^D is elliptic in Un\Kn.

Let u € ^(ZZmax). Then Du e L^(F).

Proof. 1. We note first that if Z^D is elliptic (everywhere) then this is an easy
consequence of elliptic regularity. Namely, if Hu = v e L^(E) then D^u =
v - Vu € Z^oc(^) an(! hence by elliptic regularity this implies u € H^(E). I.e. ZA is
locally of Sobolev class H2 and hence in particular Du € L^(£1).

2. If D^D is not elliptic everywhere then we have to invoke the hyperbolic
equation method as presented e.g. by P. R. Chernoff [3]. As in 1. we have DtDu €
L^(E) and hence, by elliptic regularity, u \ Un \ Kn is locally of Sobolev class H2,
in particular (Du) f Un \ Kn is locally square integrable.

We now show that (Du) \ Kn is square integrable. Choose a large compact set
K D Un and let D be a first order differential operator which coincides with D over
K and which vanishes outside a large compact set L. Now consider the operator

^:=(^l)•
T is a formally symmetric differential operator which vanishes outside a compact
set. Hence, T has bounded propagation speed, in particular it satisfies ChernofTs
condition f°° ̂  = oo. Thus by the hyperbolic equation method [3] all powers of T
are essentially self-adjoint.

Next choose a cut-off function ^ e C^°(M) with (f) = 1 in a neighborhood
of Kn and supp^ C Un. Then the commutator [Z^D,^] == [Z^D, (f)} is a first
order differential operator which is supported in Un \ Kn. In particular [D^, cf)]u €
H^(E) and hence ^D^u) = [^D, ̂ u+^bu = [D^D, ̂ u+^Du e L2(E).
Then

^oH5'̂ ) (-
is square integrable. Since T2 is essentially self-adjoint, this implies that

(^ r- ^i^ _ ^/^W e ^(T2) = Q(T2} = {v C L^EQE) Tv^v e L\E@E}}, (2.28)

hence

^-W ^
is square integrable. This implies that (Du) f Kn is square integrable. D
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Remark 2.10. If D^D is not elliptic in the shells Un \Kn then in the proof of 2. we
face the difficulty that there is no obvious way to construct enough cut-off functions
( / ) such that DtD{(i)u) e L2(E). It would be enough to show the following: given
u € L^E^^^Du G L^(E) then there is a v e L^^^^Dv e 42omp(^) such
that v \ Kn = u. v does not necessarily have to be of the form ^u.

Proposition 2.11. Assume that Conjecture 2.5 holds. Then condition (2) in The-
orem 2.3 implies condition (3).

Proof. Since q > 1 the condition (2) implies f°° ̂  = oo (cf. (2.19)), hence the
symmetric operator (2.26) satisfies ChernofTs condition [3, Thm. 1.3]. Thus all
powers ofT are essentially self-adjoint. Now, i f ^ G S(H^^) then D^-Du e L^(E)
and hence

« - 0 (2.30)

satisfies u C L^(E ® £'), T^u e L^(E ® E). Consequently, Conjecture 2.5 implies

^-("J eL^(F©F), (2.31)
V^^/

and thus Du € ^?oc(^)- D

References

[1] C. BENNEWITZ: Symmetric relations on a Hilbert space. Lect. Notes Math.
280 (1972), 212-218

[2] M. BRAVERMAN: On self-adjointness of a Schrodinger operator on differential
forms. Proc. Amer. Math. Soc. 126 (1998), 617-623

[3] P. R. CHERNOFF: Essential self-adjointness of powers of generators of hyper-
bolic equations. J. Funct. Anal. 12 (1973), 401-414

[4] A. DIJKSMA and H. S. V. DE SNOO: Selfadjoint extension of regular canonical
systems with Stieltjes boundary conditions. J. Math. Anal. Appl. 152 (1990),
546-583

[5] I. GOHBERG and M. KREIN: Theory and applications of Volterra operators
in Hilbert spaces, vol. 24 of Transl. Math. Monographs. Amer. Math. Soc.,
Providence, RI (1970)

[6] I. KAC: Linear relations, generated by canonical differential equations. (Rus-
sian) Funct. Anal. Appl. 17 (1983), 86-87

[7] I. KAC: Linear relations^ generated by a canonical differential equation on an
interval with regular endpoints, and the expansibility in eig'enfunctions. (Rus-
sian) Deposited Paper, Odessa (1984)

X-17



[8] V. KOGAN and F. ROFE-BEKETOV: On square-integrable solutions of sym-
metric systems of differential equations of arbitrary order. Proc. Roy. Soc.
Edinburgh Sect. A 74 (1974/75), 5-40

[9] H. LANGER and B. TEXTORIUS: A generalization of M.G.Krein's method of
directing functionals to linear relations. Proc. Royal Soc. Edinburg Sect. A 81
(1978), 237-246

[10] M. LESCH and M. MALAMUD: On the number of square-integrable solutions
and self-adjointness of symmetric first order systems of differential equations.
In Preparation

[11] I. OLEINIK: On the essential self-adjointness of the Schrodinger operator on a
complete Riemannian manifold. Math. Notes 54 (1993), 934-939

[12] I. OLEINIK: On the connection of the classical and quantum mechanical com-
pleteness of a potential at infinity on complete Riemannian manifolds. Math.
Notes 55 (1994), 380-386

[13] I. OLEINIK: On the essential self-adjointness of the general second order elliptic
operators. Proc. Amer. Math. Soc. 127 (1999), 889-900

[14] B. ORCUTT: Canonical differential equations. Ph.D. thesis, University of Vir-
ginia (1969)

[15] L. SAKHNOVICH: Deficiency indices of a system of first-order differential equa-
tions. (Russian) Sibirskii Math. J. 38 (1997), 1360-1361. Translation in
Siberian Math. J. 38 (1997), 1182-1183

[16] M. SHUBIN: Classical and quantum completeness for the Schrodinger operators
on non-compact manifolds. In: B. BooB-Bavnbek and K. P. Wojciechowski
(eds.), Geometric aspects of partial differential equations (Roskilde, 1998)^ vol.
242 of Contemp. Math. Amer. Math. Soc., Providence, RI (1999), pp. 257-269

[17] M. SHUBIN: Essential self-adjointness for magnetic Schrodinger operators on
non-compact manifolds. In: Seminaire: Equations aux Derivees Partielles,
1998-1999. Ecole Polytech., Palaiseau (1999), pp. Exp. No. XV, 24

[18] J. WOLF: Essential self-adjointness for the Dirac operator and its square.
Indiana Univ. Math. J. 22 (1973), 611-640

THE UNIVERSITY OF ARIZONA, DEPARTMENT OF MATHEMATICS,
617 N. SANTA RITA, TUCSON, AZ 85721-0089, USA
lesch@math.arizona.edu
www.math.arizona.edu/~lesch

X-18


