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Journees Equations aux derivees partielles
Saint-Jean-de-Monts, 31 mai-4 juin 1999
GDR 1151 (CNRS)

Boundary singularities of solutions to quasilinear
elliptic equations

Vladimir Kozlov Vladimir Maz'ya

Abstract
Asymptotic formulae for solutions to boundary value problems for linear

and quasilinear elliptic equations and systems near a boundary point are dis-
cussed. The boundary is not necessarily smooth. The main ingredient of
the proof is a spectral splitting and reduction of the original problem to a
finite-dimensional dynamical system. The linear version of the corresponding
abstract asymptotic theory is presented in our new book "Differential Equa-
tions with Operator Coefficients", Springer, 1999

In the article [W], S. Warschawski obtained an asymptotic formula for conformal
mappings of curvilinear strips under rather weak restrictions to their boundaries.
His proof is based on methods of geometric function theory. Here we state a corollary
of Warschawskfs result, which was the starting point of the present work.

Let Q be the domain [z = x + iy : y > f(x)} in the complex plane, where /
is Lipschitz and /(O) = = 0 . By w we denote a conformal mapping of Q onto the
half-plane {w = u + iv : u > 0}, w(0) = 0. Suppose that f'{x} —> 0 as x approaches
0 except possibly for a set of measure zero and that

Ai/w+i.n-^n^oo.
Jo P

Then the real part of w admits the asymptotic representation as z —> 0:

^(z)~c(y-/(.r))exp{-^y l(/(p,)+/(-p))c^}, (1)

where c is a constant. This relation can be interpreted as an asymptotic formula
for a solution to the Laplace equation in a neighbourhood of the origin with zero
Dirichlet data on the curve [z : y = f(x)}.

In the present lecture we state asymptotic representations similar to (1) for
solutions to the Dirichlet problem for arbitrary order linear and even quasilinear
elliptic equations and systems in the multi-dimensional Lipschitz domain

Q={^=(^^)e^ :^> / (^ ) } .
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Let /(O) = 0 and

flIV/ll^-^oo, (2)
u 0 r

with B^ denoting the ^-dimensional ball with radius p centred at the origin.
The representations just mentioned are examples of application of a recently

developed asymptotic theory of nonlinear abstract higher order ordinary differen-
tial equations. ^From 1990 we worked on an asymptotic theory of arbitrary order
linear differential equations with unbounded operator coefficients in a Hilbert or
Banach space. The impetus was given by our previous and simultaneous studies of
singularities of solutions to elliptic boundary value problems (see [KMR]). The first
real publication summarizing our linear abstract theory has just appeared as the
Springer book [KM1] (previously we wrote seven preprints concerning this topic).
In Introduction to the book we mentioned that reach possibilities for generaliza-
tions to nonlinear operator equations were left aside. Some of these possibilities are
discussed in what follows.

We study solutions to the equation

A(Di)u(t) =Y^Dr3^f,(t:u(t)^.^Dt---qu{t)) (3)
.7=0 •

on a semiaxis t > to^ where A{Dt) is an ordinary differential operator of order £ with
unbounded operator coefficients in a Hilbert space and Ao, • . • ,A/g are nonlinear
operators. We write the right-hand side in this form in order to cover more general
nonlinearities: the operators A/j are not assumed to be differentiable. Our conditions
on A(Df) are dictated by an analogy with linear elliptic operators written in the
variational form and are the same as in [KM1].

Our main concern is with the asymptotic behaviour of solutions as t —^ +00.
We show that for a certain class of equations (3) the question of asymptotics can be
reduced to that for a finite dimensional dynamical system perturbed by a "weak7'
non-local nonlinear operator. This is a far-reaching generalization of a similar result
for linear differential equations with operator coefficients obtained in [KM1] (see
Ch. 13). However, since the right-hand side is now written in the generic divergence
form, our present result is new also for the linear case and, apparently, even for
linear ordinary differential equations with scalar coefficients.

In order to avoid technicalities we give a very approximate description of a general
result concerning a solution u{t) to (3). Let u be subject to a growth condition of
the type

l^-<?(M+i) ^ ^W ^or ^S6 P0^^ ^ (4)u

where Wi~q is a Sobolev space and the majorant M(t) behaves like exp{—kot) in
a certain rough sense. Estimates of this type are usually obtained in applications
by using specific features of the equation: one relies upon monotonicity properties
of differential operators, the maximum modulus principle and more refined tricks.
Dealing with an abstract theory we take (4) for granted.
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Under some natural assumptions on the nonlinearity we obtain the representation
K,

col(u(t),...,D!-q-\{t))=^h,(t)co\(U,(t),...,Di-<l-lU,{t))+v(t). (5)
5=1

The vector functions Us are solutions to A{Dt)U(t) = 0 of the form exp(zV)P(t)
with \y being eigenvalues of the pencil A(\) on the line SA = fco and with P being
polynomials with constant vector coefficients. The vector h = ( / i i , . . . , /^) satisfies
the finite dimensional perturbed dynamical system

Dth(t)=N(t^h(t))+K[h}(t). (6)

For the components of N we have the representation

N.[/̂ ) = EW^; E MW^),... ̂  ̂ (^~^(<))IA9"^)
J=0 5=1 5=1

where 14 are solutions of the adjoint equation ^t*(£)()V(<) = 0 which are connected
with Us by a biortogonality condition. Here, (• |-) is the scalar product. By K we
denote a non-local nonlinear operator.

The vector function v can be regarded as a remainder term. We give estimates
which show that K and v are weak in a certain sense.

Our main technical tool is a comparison principle which shows that solutions to
a certain ordinary differential equation majorize solutions of equation (3) (compare
with [KM1], Sect.5, and [KM2]). It is this principle that we use to obtain estimates
for the vector function v and the operator K.

System (6) is the corner stone of our asymptotic theory. On one hand, it can be
applied to construct solutions of (3) with the vector h(t) asymptotically close to a
solution of the dynamical system

Da(t)=N{t:x(t)). (7)

On the other hand, one can try to show that solutions to (3) subject to the growth
restriction (4) have the asymptotic representation (5), where the vector h satisfies
(7).

Consider the differential equation in the domain B^ n R^:

C2m(9Mx) = ̂  (-^(A^, {Q^U{X} }|,|^)), (8)

|Q|<m

where 9^ = V. By ^2m(0 we mean a homogeneous polynomial of degree 2m with
real constant coefficients.

We assume that (-1)^2^(0 is positive for ^ e W1 \ 0. Without loss of gen-
erality we suppose that the coefficient of ^m(^) in 9^ is equal to (-I)771. By
Na = ^Q^. {^}|/3|<m) we denote functions subject to the Caratheodory condi-
tions, that is these functions are measurable in x for all {Yg}^^ and continuous
in {yo}\Q\<m for almost all x.
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The solution u, which is understood in a variational sense, belongs to the local
Sobolev space W^m(B^W^\ 0), p e (0,oo), and is subject to zero Dirichlet
conditions on (B^ n 9R^) \ 0.

Under some restrictions on the operators and solution we obtain the asymptotic
formula

u(x) - X(r)^ ,

where the function X satisfies the ordinary differential equation

9rX(r) + r71-1 t E N^ X(r){ 9^ }^)9^E(x)d0 = 0 , (9)
^-1 ,

where 5^~1 is the upper unit hemisphere and x = rO, r = \x\. By E we denote the
solution of

C2m(9Mx) = 0 (10)

in R^, positive homogeneous of degree m—n and subject to the Dirichlet conditions
on the hyperplane Xn = 0:

93^E=0 for 0 < j < m - 2 , and 9^1E=.8{x'},

where 8 is the Dirac 5-function. Up to the change of variables ( = logr~1 this
equation is a special case of the dynamical system (7).

Let us discuss the special case when equation (8) is linear, that is we consider
the Dirichlet problem

C2mWu= ^ {-9^{N^x}9^u} i n R ^ n B i , (11)
\a\,\/3\<m

9^u(x\ 0) = 0 for k = 0 ,1 , . . . , m - 1 and x ' e (R71"1 n Bi) \ 0. (12)

Let Na0 satisfy

f E lllr^"IQ^IA^^||ioc(^)P-l^<oo. (13)
1/0 \a\^\<m

where Qp = [x € Q : p > |.r| > y0/e} . Now equation (9) is written as

9rX(r) + r71-1 t V N^{x)9^x^9^E(x)d0X{r) = 0
j Qn—\

t/5+ \a\,W<m

and therefore any solution of (11), (12) subject to

\u{x) | ̂  C^r-71-1-^ with ^ > 0 (14)

admits one of the following asymptotic representations:
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Either

or

u(x) ~ cE(x) exp { f ^ A^(0<9f2?(0 ̂ d(i\
1 ^KI^KI |Q|,|/3|^ J

u(x) ~ c^ exp { - ! ^ A./^)^ <^(0^} .
1 •^Kl^la^m J

We formulate two special cases which seem to be of independent interest.
Consider the equation

n

" S <9^ (aij(x)Q^u) =0 in R^ n Bi
2,J=1

complemented by the boundary condition

H(:r',0)=0 forrr'eR^nBi.

Let
/*! "/*! "

/ ^ ll%•(•)-^lli-(^,)P~l^<^) •
^o , ._i/ ElM

zj=l

Then any solution u subject to

\u(x)\ ̂ Cp1-^ (15)

admits the asymptotic representation

u(x)^cx^xp{^w f i>.n(o-m(^i-")rfd.1 7r J\x\<\a,\<\ ̂ i )

Another example is provided by the Schrodinger equation

(iV + ̂ (x^u - P(x)u = 0 i n R ^ n B i

complemented by zero Dirichlet condition on the hyperplane x^ = 0. Here m is a
magnetic vector potential and P is an electric potential. The condition (13) becomes

rsup^lm^l+^IP^D^Oc.
Jo ee^ip Plo ^p

Then all solutions subject to (15) admit the asymptotic representation

, , f r(n/2) r /-, , . . . n(m(0,a \ ^2 )
„(,) ~ €,„ exp { - ±^ j^ [PW - H2 - -^^.)^^} .

Now we come back to the Lipschitz domain Q and consider equation (8) in B^nQ.
Let u be a variational solution of (8) in the local Sobolev space ^^{B^ n Q \ 0}
and subject to zero Dirichlet conditions on (B^ n 9Q) \ 0.
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The results obtained are new even for solutions to the linear equation (10).
Therefore we begin by describing the asymptotic behaviour of solutions to (10). We
show that any solution to equation (10) in B^ D 0 satisfying the zero Dirichlet con-
ditions on (B^n9^l)\0 and the estimate (14) is subject to the following asymptotic
alternatives:

Either

u(x) - c E(x^ Xn - /Or')) exp { f f^Q^E^^ Q}dA
U\x\<\^\<\ 'n J

or

u(x) - c Or, - /(^rexp {- t f(^E^^)d^} , (16)
I J\x\<^\<! ) '

where c = const.
In the special case of the polyharmonic operator C^m == (-A)'71 the above alter-

natives become:
Either

(xn-f^}^ ( r(n/2) r . . . d ^ }
u(x) ~ c—————— exp {m , / f ((•}——>

^ \ ^ !w^ ^\n}
or

^)^(..-swr^{-mW /^w)§].
If m = 1 and n = 2 the last formula coincides with the Warschawski asymptotic
formula (1).

We give two examples of application of our asymptotic theory to quasilinear
partial differential equations. Consider the equation

^m{Qx)u = IV^)^)/^-^ in B? n Q.

where k is a non-negative integer such that m — n < k < m. Now, we deal with
an arbitrary solution u € W^^ n Q \ 0) satisfying zero Dirichlet conditions on
(B^ n (90) \ 0. We replace (2) by the more stringent condition

|log|a:'|| |V/(:r')| < C for small [4 (17)

Then one of the following alternatives is valid:
Either u satisfies (16) or

u{x)^h(\x\)E(x^Xn-f(xf))^

where h is a solution to the equation

h\r) + ̂ hir) - ̂ {r}^^'^-^ = 0
r- r

with
/(r)= f f^Q^E^e'W

J5"-2
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and
a= [ \{^kE)(0)\(M)/k^n~m)0mde .

^-1

The second example deals with an arbitrary solution u to the equation

Ai7 = la;!"4!^!2^

in B^ n ̂  which is continuous in B^ n Q \ C? and vanishes on (B^ n <9Q) \ 0. Using
our asymptotic scheme we show that under condition (17)

u[x}^^h(\x\){xn-f{x1}}

where e is a constant unit vector and h is a solution of the equation

h\r} - ̂ (r) - ̂ (r) = 0 .
r- r

Here -'-^u^
and

a = { 6^d6 .
Jsr1

In conclusion we add that the same ideas led us in [KM3] to an asymptotic
description of all solutions to the Neumann problem for the two-dimensional Riccati
equation:

^u+a{x)(^^u)2+2(3(x)9^u9^u+^x)(9^u)2=0 (18)

in the sector K§ = [x = (rri,^) € R2 : 0 < r < 6,0. € (0,y?)}, where (r,0) are the
polar coordinates of x, and y € (0, 27r],

9eu\e=o = 9eu\e=^ = 0 for r < 5.

Here a, /3 and 7 are measurable functions. We suppose that for almost all x € Ks
and for all (^2) € K2

^ (̂ i2 + ̂ 22) < ̂ )^ + 2/?(.r)66 + 7(̂ 22 < A (^2 + ̂ ) (19)

with positive constants A and A. We assume that > belongs to the Sobolev space
W^(Ks\0).

There exist two possibilities: either u is unbounded and then

u(x) =Q(r)+c,+o(l!. (20)

where

Q(r}=

[ ^ d s / r f a(x)x2,+20{x)x,X2+-f{x)x^ , ^
/ —I / / ———————r~T"i———————dx^dx^/ ^

Jr S \J ]^K.\K_ |.E|4Jr S \ j J^KAK. \ X 4 >IT a ^J JX^KS\K,
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or u is bounded and has the same asymptotics

u(x) = Co + cir^ cos(7T0/y) + o(r^) (21)

as in the case of the Neumann problem for ^\u = 0. Here c^ Co and ci are real
constants.

Clearly,

A log log - < Q(r) < A log log - for r < 6 / e . (22)

If the coefficients a, (3 and 7 are constant we write the asymptotic expansion for
unbounded solutions:

«M~dlogl,gr-+c.+f:pt<'og">^.'•g),
^—^ flop-r-1^(logr-i)^k=l

where
ri= ( a + ^ g sin2^ a-7 sin2y\

^ 2 0^ 4 (^ y
^a + 7 . sin2^ a — 7 sin2y^-1

~T~ • ° ~^ + ~T~ ~p~) ?

and Pk{r, 0) are polynomials of degree <^ k m r whose coefficients are smooth func-
tions of 6 € [0, y]. If u is bounded it admits the asymptotic representation

m:r) ~ {x) - Co + ̂ r^/^_i(logr^ (23)
A;=l

where Co = const and pk are polynomials in the first argument with smooth coeffi-
cients on [0, y?].

These results and their proofs can be extended to the case when 0 is the center
of the disk Kg = [x : r < 6}. One should only put y = TT in (21) and (23). In other
words we also describe the asymptotic behaviour of solutions to equation (18) which
are either bounded at 0 or have an isolated singularity there.

It is worth noting that equation (18) and the Neumann conditions as well as as-
sumption (19) about the coefficients a, (3 and 7 are preserved under conformalmap-
pings. Therefore (20) and ( 21) along with asymptotics ofconformal mappings (see
[W]) imply asymptotic representations of solutions at infinity and near boundary
singularities other than corners, for example, cusps.

The requirement (19) can not be removed. In fact, the function U{x) = logr~1 4-
cos 0 is a solution of the homogeneous Neumann problem for the equation

^—^[WI^O
1 + sin2 0

in the upper half-plane. Bv (22) the singularity of this solution is stronger than that
in (21).
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