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Saint-Jean-de-Monts, 2-5 juin 1998
GDR 1151 (CNRS)

On Bilinear estimates for wave equations

Sergiu Klainerman Damiano Foschi
Abstract

I will start with a short review of the classical restriction theorem for the sphere and
Strichartz estimates for the wave equation. I then plan to give a detailed presentation
of their recent generalizations in the form of " Bilinear Estimates97 . In addition to
the L2 theory, which is now quite well developed, I plan to discuss a more general
point of view concerning the V theory. By investigating simple examples I will derive
necessary conditions for such estimates to be true. I also plan to discuss the relevance
of these estimates to nonlinear wave equations.

1. Introduction.

In this lecture we plan to give an account of our recent work [1] concerning general bilinear
estimates for solutions to homogeneous wave equations.

Consider the homogeneous wave equation

D<^ = o (D = -9^ + A^, t e R, x e IT),
subject to the reduced initial conditions at t = 0,

(j> = /, ^ = 0.

The solution (f> to this initial value problem possesses some important space-time integrabilitv
properties known under the name of ^Strichartz estimates".

Theorem 1.1 (Strichartz [12], Pecher [II], Ginibre-Velo [2], Keel-Tao [4].). We have

0) IÎ L^ \\f\\H^

whenever the exponents q^r^a satisfy the following conditions:

2 ( \ \\
- <_ 7(r) = (n — 1) ( - — - , (concentration).
q \2 r )

/9 ^ — 1\
\-^Y——T) + (1.14), (endpoint),

1 n n
- + — = —<^ + - , (scaling).
/Tr y t/q r
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These estimates have turned out to play a decisive role in the study of both regularity
and long time behavior for solutions to semilinear wave equations of the type

Ou= F(u).

They apply, in particular, to the question of minimal regularity of initial conditions for which
one can construct meaningful solutions to these equations ([3], [10], [13]). The Strichartz
inequalities are however not well adapted to equations, such as Yang-Mills, Wave Maps etc.
which contain derivatives in the nonlinear terms

D u = F(u,9u).

In recent years, new estimates, based on a bilinear point of view ([5]- [8]), have allowed
us to make some progress on this type of problems. At the heart of the new approach lie
certain estimates which can be viewed as a bilinear generalization of (1). Observe that (1)
has in fact an equivalent bilinear formulation as

ll^'ll^2^2 ^ ll-fc Ibll^o -
where <p and ^ are both solutions of the homogeneous wave equation with initial data at
time t = 0,

<^=/, <9^=0, ^=g, Q^=Q.

One way to generalize these estimate is to consider estimates for derivatives of products,
or more general bilinear expressions, in particular those which possess some cancellation
properties (null condition).

More precisely, we want to investigate what are the possible estimates of the type,

(2) \\Q{^\\^^^ \\f\\^ ,\\g\\^.

when Q- is one of the quadratic null forms Qo, Q^, Qo^ defined by

Qo{(f>, ̂ ) = -Wt^ + V^ • V^,
Qi^cf), ̂ ) = 9i4>9^ - 9^9^, 1 ^ i < j ^ 72,
Qo,(0, ̂ ) = 9i(p9^ - 9,W\ 1 <: j ^ n.

We will also consider derivatives of products,

(3) l^0^^^^^ ^ m^1 M^- -II IIL^ Lj;

where

(^°/no= i^rm
(DC,Fr(T^)=(\r\+\^rF(r^).

(^F)~(T,a=||r|-K|rF(r.e).

At least for the case q / 2 = r / 2 == 2, using PlanchereFs theorem we can see that the
estimates (2) follow from (3) by making use of the following lemma.
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Lemma 1.2. Let d) and ^ be solutions of the homogeneous wave equation. Then

Qo{6^) = ̂ n(^) % ̂ D^D.{^}.

Moreover, let (f> = \(f>\ and ̂  = |^|. Then (f> and ̂  are still solution of the homogeneous wave
equation whose data have the same H01 norms as those for of) and ^, and

QzA^^Q ^ \^D1 (Z)4^4))'(r,0

We present here a summary of our main results.

1. Complete necessary and sufficient conditions when q / 2 = r/2 = 2.

2. Necessary conditions and conjectures for general (q^r).

3. Some special cases:

(a) q = oo, r = 2;

(b) 2/9 = 7(^), /4 = /?- = 0, A) < 0.

4. Applications to the bilinear null forms Qo, Qij, and also D"1^^, ̂ ) and Qi^D'1^, ̂ ),
the last two being important for the theory of Yang-Mills equations.

2. Restriction theorems for the sphere.

The proofs of these results are based on the Fourier transform and techniques of harmonic
analysis, such as restriction theorems and dyadic decompositions. The main observation is
that the Fourier transform of a solution to the homogeneous wave equation is a measure
supported on the null cone, which can be seen as a linear combinations of distributions of
the form

<^a=^(T=^i)^
with / € L2.

A pedagogically interesting, and simpler, situation is to consider functions whose Fourier
transform is supported on the unit sphere. What we want is to generalize the restriction
theorem of Stein and Tomas to a bilinear setting. Let us first recall the content of the
restriction theorem.

Let S = S7'"1 be the unit sphere in R71 and define the restriction operator Rf = f .
s

Theorem 2.1. Assume

K,,<^<2.
~ n+3

Then Rf is well defined/or any f € ^(R") and we have

11^11^ )^11 /11^ " ) -
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This theorem has an equivalent dual formulation. Consider the Stein operator, defined
as the adjoint of the Fourier restriction operator Rf = f ,

s

Sf{x) = R-f{x) = fe^f^)dS^ ^ (fdSr{x).
Js

Theorem 2.2. Let f € t^S) and

2(rzJ_l)
^T^00-

TTien ^?/ € LP{Rn) and

(1) I I^HL. (R")^ I I / I I^ (S) .

Since the exponent '"_^ is greater than 2, we also have a bilinear formulation, which,
in its sharpest case, reads

\\Sf- Sg\\^ ^||/||^(S)NI^(S)-

The condition p > ^_^ is sharp in view of the Knapp example.

Example 2.3. Consider f = g = \c^ the characteristic function of the set C\, where Ce
is the cap defined as the intersection of the sphere § and the rectangular box1

^ = ^ € ^ : |^i-1|^|^| ::,.},

for a small e > 0. We write

Sf^^e^ f ^l-l)e^/cLS;,
JCe

and observe that it is possible to choose a region R. defined by

^^{^eR^ki l^.-M^I^.-1} ,

such that \Sf(x)\ ̂  \C.\ when x 6 R^ (See Figure 1 . )
Therefore,

P^>iWd^~ -—^irniw- ic.i. ~ t p -
In the limit £ —» 0 an inequality like (1) implies p ^ 2 ^ n + l ^ .

^Ve use the following convention for vectors in /?" and their components: x = ( x i , x ' ) = ( x ^ , x->, x " ) .
x G E", x ' e E"-1, .c" G R"-2. If n = 2 then a;" = 0.
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Figure 1: Knapp example.

A similar result holds if, in the bilinear version, we take / and g to be supported in
diametrically opposite caps on the sphere.

On the other hand, if the supports of / and g are projectionally disjoint, we may improve
the exponent p.

Example 2.4. Consider f = \c, and g = \c'^ where C. and C\ are the caps obtained
intersecting the sphere with the the boxes

De = {^ € ^ : |^i - 1| ^ e\ |̂ | ^ ., in ^ .} ,
^ - {€ € R1: |^i| < £,|^ - 1| < e\\d"\ < e] .

Then, proceeding as before, we have |5'/(a-)| ^ \C^\ when x 6 Rs and \Sg(x}\ ^ \C'^\ when
x G R^, where

R, = [x e R": |^| ̂  .-2, |̂ | ̂  £ - 1 ,1 .^1 $ ̂ -1 } ,
/?: = [x e R": |.n| ̂  .-1, 1^1 $ .-2, H ^ s - 1 } .

f5ee Figure 2.)
We can estimate the product Sf' Sg only on the intersection of R^ with 7?', and we have,

\\Sf'Sg\\^ ^ \C,\\C^\\R^R^
\C^\C'^

.n-l-^-

1 1 ^ l lL2(S)l l ( / l lL2(S)

In the limit e —^ 0, we obtain the necessary condition p >_ -2—.n-l

This improvement, however, is not optimal. We are clearly losing something, due to the
fact that the regions R^ and R'^ do not coincide. This suggests the following modification.
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Figure 2: Bilinear Knapp example.

Figure 3: Sharp bilinear example.

Example 2.5. Let f = \A, ^nrff i? = \^, where A and A' are the sets obtained intersecting
the sphere with the boxes

Be = {(i € R71 : |^i - 1| ^ e\ |^| < e\ |̂ | ^ e} .
5; = {( e ̂  : |^i| ^ e\ \^ - 1| ^ .2, |̂ | < .-} .

This time we have \Sf{x)\ ̂  \C.\ and \Sg(x)\ ̂  \C^\ simultaneously when x G R^ where

R: = {x e R-: |^| ̂  .-2, |̂ | ̂  .-2, |̂ | $ s-1}.
(See Figure 3.)

We have

\\Sf-Sg\\^ ^ W\A',\\R:\2"
II/II^(S)N^(S)~ IA^IA^I?^ - — — — T — — — T - ^ ^ - .

VII-6



When e —> 0 we obtain the (sharp) necessary condition p ^ 2(n+2) ^

The previous example motivates the following conjecture.

Conjecture 2.6 (Bilinear restriction conjecture.). Let Hi,^ two disjoint subsets of
S71-1 such that

dist(Qi, ^2) > 0, dist(Qi, -^2) > 0.

Then

\\Sf ' Sg\\^^ ̂  Il/lb(no IML )̂ .

for all f supported in Qi and g supported in ^2-

Instead of imposing a condition on the supports of / and g we may consider bilinear
forms with special cancellation properties. Let Q{f,g} = {9zSf){9jSg)-(9^Sf){9zSg}. If we
play with the above examples, replacing S f ' S g with Q(f,g), then we are lead to formulate
a similar conjecture.

Conjecture 2.7. The estimate

IIW'^IIL^^^II^^NL^S)-
holds for any f^g 6 L2^), (with no assumptions on the supports).

These conjecture can be easily proved to be true in the case n = 2. The two dimensional
case is somehow special, due to the fact that n±l ^ 2. In fact, using PlanchereFs theorem and
Cauchy-Schwarz inequality, we can derive the following result,which implies the conjectures.

Proposition 2.8. Let n •==- 2. We have

w.s^^n j™-^^,
J J §ixSi (1 - ( r j - C)2)7

3. Bilinear estimates for the wave equation.

We consider now two solutions, ^ and ^, of the homogeneous wave equation in R14"71,

(1) a < ^ = 0 , D ^ = O ,

subject to the initial conditions at t = 0,

(2) ^(0, •) = /, ^(0, •) = 0, ^(0, •) = g. <9^(0, •) = 0.

We want to investigate the regularity, in terms of differentiability as well as space-time
integrability, of the product <^. Let n ^ 2, 1 ^ q,r <^ oo and 01,02 ,A),/9+,/.L € R.
Consider the bilinear estimate

(3) b^z/-^)!!. ^II^VIL, ll^02^.
II ll^t^i
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Proposition 3.1 ([!]). If the bilinear estimate (3) is true then the exponents must satisfy
the following conditions:

(4) A) + /?+ + /3- = Qi + 02 + 1 - n (\ - ^-Y
q \ r )

w -'^(i-1),q 2 \ r }

(6) ^l-^-Yl-i),
9 2 \ r/

(7) A) ^ 1 - n fl - i) ,
9 V r/

(8) ^^-(n+^f l - - 1 ) ,
q \ r j

(9) ^+^^ - ^
9

(10) ^ ^0 .+ n l -+n ( l l - \
2 q \2 r j

/ n \ ^ o n 1 n- — 1 /1 1\
(11) ^ ^ / 3 - + - - - + — — — --- ,2 g 2 \2 r )

(12) o^/3_+^ ( 2 = 1 , 2 ) .

The first one of these condition follows immediately by dimensional analysis, since by
homogeneity of the norms involved the estimate has to be scaling invariant.

The Fourier transform of the product ̂  is a convolution of two measures supported on
the light cone |r| = |^|. The light cone is the union of the (+) component, r = |<f | , and the
( — ) component, r == —|<^ | . Accordingly, we decompose the solutions of the wave equation
as the sum of two pieces, (f> = ^+ + ^~, where

^(t.x)^ I e^^e^f^)^.
JR^

<? { ^ x }
JR^

Notice that the Fourier transform of ̂  is supported on the (±) component of the light
cone. The product <^ is then the sum of four terms

0^ = (^V^ + ̂ y- + ̂ -.0+ + (^-y-.

By symmetry, it is enough to consider only the (++) and (+-) cases.
The conditions of Proposition 3.1 are obtained considering specific examples which test

the regularity properties of the products (j^zl^ when the data are localized in frequency
space. The method is similar to that used for the examples on the bilinear restriction
theory.

Same frequency examples
Example 3.2. This example is the analogous of the Knapp example, Example 2.3, adapted
here for the wave equation. Consider the (++} case with data defined by f = g = \Ae where
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Figure 4: Knapp example for the wave equation.

A^ is the set

Ae = U € R" : 1 < ̂  2, |̂ | ^ e}.

The (++) interaction then concentrate on a set R^ given by

R, = {(^): \t\ ̂  e-\ \t + x,\ ̂  1, M ^ f-1} .

(See Figure 4 ' )
The condition that follows when testing the estimate (3) on this example is

2/3- - 2 + (72 - l) fl - 1) > 0,
q \ r )

which corresponds to (6).

Example 3.3. Consider the (++) case with data defined by f = \p^ g = \G^ where 7^, Ge
are the sets

F ^ ^ e R ^ I ^ - i l ^ ^ J ^ ' l ^ . } ,5

1
L-Tc-G'.-^eR^i+ll^J^I^-}.

The (++) interaction then concentrate on a set Re: given by

R^{{t,x}:\t\^£-\\X\^£-1}.

(See Figure 5.)
The condition that follows in this case is

which corresponds to (7).

A) - 1L + " f i - ^ ) ^ o,q \ r )
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Figure 5:
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Re --1

Figure 6:

Example 3.4. Consider the (++) case with data defined by f = \^, g = \G£ ^ where Fe^ Ge
are the sets

F^^eir:^-!!^-2,!^^},
^^{^iR^I^+il^.2,!^!^.-}.

T/?e (++) interaction then. concentrate on a set Rs given by

R. = {(t.x) : \t\ ̂  e-\\x,\ ̂  e-\\x'\ ̂  s-1} .

(See Figure 6.)
The condition that follows in this case is

^ o - ^ + ^ + l ) ! ! - 1 ) ^0,q \ r )

which corresponds to (8).
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Example 3.5. This example is the analogous of Example 2.5, Consider the (++) case with
data defined by f = \p^ g = \Q^ where F^, Ge are the sets

F. = { ^ € R71: |^i - 1| ^ e\ H ^ e\ 1^1 <. e] ,
G. = {^ R- : |^i| ^ e\ \x, - 1| ^ .2, l^'l ^ 5} .

T/^e (++) interaction then concentrate on a set R^ given by

R. = {(t,x} : \t\ ̂  e-\ \x,\ ̂  £-\ \x,\ ̂  e-\ W ̂  .-1} .

(See Figure 7.)
The condition we derive in this case is,

2 / 1\
--+(n+2) 1-- ^0,

q \ r )

which corresponds to (5).

Example 3.6. Consider now the ( + — ) case with data defined by f = \p^ g = \Q^ where
F., G. are the sets

F,={^ eir: |^-i | ^6j^| ^5},
G^^eR^i+ll^jri^}.

The ( + — ) interaction then concentrate on a set Re; given by

R, - {(^) : \t\ ̂  e-\ \t + x,\ ̂  E-1. \x'\ ̂  e-1} .

(See Figure 8.)
Following the same steps as in the previous examples we derive,

0o + /?+ + f3. - 2 + n ( l - r} ̂  0,
q \ r ;

which, according to (4), corresponds to (7).
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Figure 8: (+—) case.

Mixed frequencies examples
Example 3.7. Consider the (++) case with data defined by f = \p^, g = ̂ , zuhere
FL-,GL cire the sets

Fz^^eR71:^^ ^ L + l , |̂ 1},
G f L = { ^ e R 7 ^ : l <^ ^2, |^| ^1}.

T/ie (++) interaction then concentrate on a set RL given by

RL={{t^):\t ^ l , k | ^ i } .
The condition that follows in the limit L —^ oo is

-A) - /3+ + ai ^ 0,

which corresponds to (10).

Example 3.8. Consider the (++) ca^e w^ c?a/a defined by f \FL^ 9 = \GL^ where
FL, GL are the set

F L = [ ^ e R n : L ^ ^ < 2 L , ̂ [^L^Y

GL={^Rn:l<^ ^2 , |^'|^1}.

T^e (++) interaction then concentrate on a set RL given by

RL = {(t.x) : \t\ ̂  IJf + .nl ^ L-\ \x\ ̂  L-^ .

The condition that follows in the limit L —^ oo is

n + 1 (\ 1
-f3o - /?+ + ai - ^ 0,

which corresponds to (11).
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Example 3.9. Consider the (++) case with data defined by f = \^, ^ = ^. u^ere
FL-,GL are the set

F L = { ( i e R n : L ^ ^ ^ 2 L ^ ^ ^ L } ^
GL^eR^K^^J^l}.

77^ (++) interaction then concentrate on a set RL given by

RL={^x}:\t\^l,\x\^L-1}.

The condition that follows in the limit L —> oo is

-f3o - /?+ + a, + ]- - n f 1 - 1} ^ 0,
q \2 r )

which corresponds to (12).

We conjecture that the set of necessary conditions in Proposition 3.1 is complete, with
the exception of some limiting cases.

It is not difficult to verify it for the case when q = oo and r = 2.

Theorem 3.10. The estimate

D^D^D0.-^ ^ H^/lb H^IL..
"•"t " x

holds whenever the exponents verify the conditions

(13) / ? 0 + / 3 + + / ? - = O i + Q 2 + ^ ,

(14) f3- > -n^

(15) A ) > ^ ,

(16) o i + 0 2 > 0 ,

(17) Q .< .^ -+^ , ( ? = 1 , 2 ) .

All the strict inequalities are necessary, with the possible exception of (14) for which we
still don't know what happens if we have equality.

Theorem 3.10 can be used to analyze the first iterate in the problem of optimal well
posedness for nonlinear wave equations. (For example Q© = (c^)2.)

Another situation, where we can completely settle the conjecture, is the case of q = r = 2.
This is the case which turns out to be very important in applications. We have the following
general theorem:

Theorem 3.11 ([!]). The estimate

Z^Z^Z)!-^)! ^ \\D^f\\^ \\D^g\\^ ,
1 1 L( L^
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holds if and only if the exponents verify the conditions

n - 1
A) + /?++/?-= QI + 02(18)

( 1 9 )
(20)

(21)

(22)

(23)

(24)

n — 3
"I"'
n-1

/?->-

/?o> -

Q, </?-+"-——, » = 1 , 2 ,

QI +o'2 ^ -,,

. . , . ( n + 1 n - 3\
(o,,/?_)^ — — , — — — , ,=1 ,2 ,

4 ' 4
1 n-3\

(Ql+02,/?-)^

The estimates of Theorem 3.11 have been used to analyze the optimal well posedness for
nonlinear wave equations. For the equations of Wave Maps the reader is referred to [7], [8],
[14]. For Yang-Mills equations see [6], [9].

We single out some special cases, which are important in applications to the Wave Maps
problem.

(25)

(26)

D^DW) L^II^/MI^L-\w
,1--D1-^ Dl((f>^)\ < LD1"7 D^g

IL2 L2 •lL?L2

To give an idea of how to prove Theorem 3.11 we show below a short proof, using our
methods, of the classical Stricartz estimate in dimension n = 3.

\^\\W ^ !!„, IHÎ  •
Proof. Since there are no derivatives in front of the product, it is enough to consider just
the (++) case. We have

<^(^)= I S(r-\^-n\-\n\)f^-i))g(n)dn.
JK3

By Cauchy-Schwarz with respect to the measure J(r — \^ — rj\ — \n\) drj we obtain

^(T, 0 2 < J(r, 0 / S(r - ̂  - n\ - \n\)\^ - n\ /(^ - n) 2 \n\ \g(n)\2 dn,

where the quantity

^)=/<iL_i^_M),,,^-
JR3 l^-^ll^l
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is uniformly bounded for r ^ |^|. Integrating with respect to r and ^ we find

11<^%^///^-1^1-M)1^1 /^-^MI^dTd^d^

^/
L2

D-^g
L2

D

The proof of Theorem 3.11 in the (++) case is not much more involved. The (+-) case,
which one doe not have to treat in the case of the Strichartz inequality, cannot be treated
in the same manner. It is in fact considerably more complicated.

Results outside the L2 theory are more difficult to obtain. Beside Theorem 1.1, we
mention the following estimates which appear in [9].

Theorem 3.12. Suppose q^r are such that

1 _ n-1
q~~2~

Then the estimate

'1 n-1
^"S" T^(U).

||̂ W)||L?L; ~ 1^° \H01

holds when

- ( i - ' ) <A^o , A^o-1^-1!.
\ r } n — 1 q

4. Conjectures for null forms.

To conclude this brief exposition, we state some conjectures for quadratic null forms.
We believe that a proof of these conjectures will provide new light and new tools to attack
many unanswered problems in the theory of regularity of nonlinear wave equations.

Conjecture 4.1. Let n ^ 2, 1 <: q,r < oo. Then

IIQo(^^)IL^$||/||^|H|^,
when

1 n ( ^\
a= l-2,+2( l-;)•

'^(l-l),q -1 \ r }

^^-l^1

q ~ 2 r'

A special case of this conjecture is when q = r =- r^.,
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Conjecture 4.2. Let n > 2, 1 <, q,r < oo. TTien

||0.,(0,^)||^^ II/UHC.N^,

w/ien

—^H)-
^H).
1 . 1 n - i / i\
^2+^( l-^•

1<!^1+1.
9 2 r

A special case of this conjecture is when q = r = ^^ < ?1±3.
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