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GDR 1151 (CNRS)

Long range scattering and modified wave operators
for Hartree equations

Jean Ginibre Giorgio Velo

Abstract

We study the theory of scattering for the Hartree equation with long range
potentials. We prove the existence of modified wave operators with no size
restriction on the data and we determine the asymptotic behaviour in time of
solutions in the range of the wave operators.

In this lecture, we report on some recent work [5] [6] on the theory of scattering
for the Hartree equation

i9tU + _ A ^ = (V ^ H2)?/ (1)^

where u is a complex valued function defined in space time JR714'1, A is the Laplacian
in j0y\ V is a real valued even function defined in 1R71 and ^ denotes the convolution
in space. The stationary version of (1) has been introduced in the late twenties as
a simplified model for complex atoms. An improved version taking into account the
Pauli principle, namely the Hartree-Fock equation, has been introduced in the early
thirties and is still used currently in the theory of nuclear collisions. If V in (1) is
replaced by a delta function, the equation becomes the cubic nonlinear Schrodinger
equation so that (1) can also be regarded as a regularized version of the latter.

We restrict our attention here to potentials V of the form

V(x) = X\x\-7 (2)

for some 7 > 0, although the results presented below extend to time dependent V
of the type

V{x) = X t^ \x\-^ (3)

for suitable ^ with 0 < IJL < n.
The Cauchy problem for the equation (1) is known to be globally well posed in H1

under assumptions on V which in the special case (2) reduce to 0 < 7 < Min(4,n),
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and in addition 7 < 2 for negative A [1] [4]. It is then a natural question to study
the asymptotic behaviour in time of the global solutions, and that problem can
be addressed through the theory of scattering. One of the basic problems in that
theory is that of classifying the previous asymptotic behaviours by relating them to
a set of model functions V == {v = v{u+)} parametrized by some data u^. and with
suitably chosen and preferably simple asymptotic behaviour in time. For each v in
V one looks for a solution u of (1) such that u(t) behaves as v(t) when t —)- +00 in a
suitable sense. If v(t) can be parametrized by its value v(0) at t = 0, one can then
define the wave operator for positive time as the map Q+ : v{0) —^ u{0). A similar
question can be considered for t —^ -oo. We restrict our attention to positive time.

In the same way as in linear scattering theory, two different situations arise. If
V decays sufficiently fast at infinity, the previous construction can be performed by
taking for V the set of solutions of the free Schrodinger equation, namely

v(t} = U(t) u+ = exp (i ( A) ̂  . (4)
\ ^ /

This is the short range case, corresponding to 7 > 1 in (2). Existence of the wave
operators for (1) in that case is proved in [11].

If V decays too slowly at infinity, namely for 0 < 7 < 1, the previous (ordinary)
wave operators are known not to exist. In fact, one can prove the following result [9].

Proposition 1. Let u e C(2R,L2) be a solution of ( 1 ) with V given by ( 2 ) and
0 < 7 < 1, and let u^. 6 L2 be such that

lim || u(t) - U(t} u. Us = 0
t-^oo ' ' "

Then u^. = 0 and u = 0.

This is the long range case. In that case it is known in linear scattering theory
that the asymptotic model functions v have to be modified by a suitable phase,
thereby leading to the construction of modified wave operators. There is a vast
literature on that subject for which we refer to [2] [10]. Here we want to perform the
same construction for the equation (1), namely to construct modified wave operators
for that equation.

The introduction of a phase in the model functions can be done in several ways.
Let cj) be a real function of space time. One can replace v in (4) by

^i (*) = U{t) exp [-z<^, -zV)] u^ . (5)

This is the choice made in most of the literature on linear scattering.
A different choice, better suited for our purpose, has been proposed in [12] [13].

It uses the following structure of the group U(t). In fact U(t) can be represented as

U(t) = M(t) D(t) F M(t) (6)

where M(t) is the operator of multiplication by the function

M(t)=exp[^x2/2t] , (7)'
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D(t) is the dilation operator defined by

(D(t)f)(x) = (zt)-"/2 f(x/t) (8)

and F is the Fourier transform. The fact that M(t) tends strongly to 1 (for instance
in -L2) when t —> 00 suggests to replace v^ by

v^t) ^M(t) D(t) Fexp[-i4>(t,-iV)]u+

= M(t) D(t) exp[-^(t, x)]w+ (9)

= expp<^, ;r/()]M(<) D(t) w+
where w+ = Fu+.

In order to construct solutions u of (1) that are asymptotic to v^, it is useful to
represent those solutions as

u(t) = M(t} D(t) expH y(t, x)}w(t) (10)

and try to ensure that w(t) ->• w+ and that y(t) behaves as (f>{t) as t ->• 00. The
parametrization (10) has been introduced in [7] [8] and used there to prove the
existence of global solutions with small initial data for the equation (1) in long
range situations.

The evolution equation for (w, y) is obtained by substituting (10) into (1). Using
the fact that

D(t)-1 (V* H2) D(t) = r^ po(w,w) (11)
where

50(^1,^2) = A Re |;r|~7 * (wiWa) (12)
we obtain

{i9t + (2t2)-1 A - r7 go{w, w)} exp(-^)w = 0 (13)
or equivalently

^i9t + (2t2)~l A - z (2^)~1 (2V(^ • V + (Ay)) I w

+{^-(2t2)"1 I V ^ - r ^ p o ^ w d w ^ O . (14)

However, the parametrization (10) is redundant and we have only one evolution
equation for two unknown functions. In the same way as in gauge theory, we arbi-
trarily add a second equation by taking the last bracket in (14) to be zero, thereby
obtaining the following auxiliary system

9tW = i (2t2)"1 Aw + (2t2)'1 (2Vy? • Vw + (Ay))w)
(15)

9tV=(2t2)~l IV^+r^w.w) .

The construction of modified wave operators for the equation (1) will be per-
formed by first constructing wave operators for the auxiliary system (15) and then
recovering u from (10).
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The first step consists in showing that the auxiliary system yields a well defined
dynamics for large time. In fact, the Cauchy problem for (15) is well posed for
large time in suitable spaces, with w(t) == 0(1) and ^p(t) = O^1"7) for large t
(see Proposition 2 below). That asymptotic behaviour for large time is obviously
compatible with (15).

The next step in the construction of the wave operators for (15) consists in
choosing an asymptotic comparison dynamics. This is obtained by dropping all the
terms that are integrable at infinity in time in the RHS of (15). For orientation
we first consider the simple case where 1/2 < 7 < 1. In that case we obtain the
asymptotic system

QfWo = 0
(16)

9tVo =t 7 go{wo,wo)
which is immediately solved by

Wo(t) = W+

(17)
yo{t) = (1 ~ 7)-1 (^-7- 1) 5o(w^w+)

with initial condition (^o(l) = 0. One sees easily that (17) provides an adequate
description of the asymptotic behaviour of solutions of (15). In fact, it follows from
the first equation of (15) that QfW = O^"1"7) so that w{t) has a limit w+ as t —> oo
and that

w(t) - w+ = 0 (r7) . (18)

Taking the difference of the second equations of (15) and (16), one obtains

9t{y - <A)) = (2<2)"1 |V^[2 + r7 go{w - w^ w + w^) (19)

the RHS of which is 0(t~27) and therefore integrable at infinity for 7 > 1/2. There-
fore (p — yo has a limit ^4. as t —^ oo and

^t)-vo(t)-^=0(t1-2^) (20)

(see Proposition 3 below).
The main step in the construction of the wave operator for the system (15) now

consists in obtaining solutions of that system satisfying (18) (20) for given (w+, ^4-).
The main difficulty consists in the fact that we want to solve the Cauchy problem
for the system (15) with infinite initial time, with initial data for y which blow up
at that time. That difficulty shows up already when solving the Cauchy problem
for the system (15) with finite initial time to with the appropriate initial condition
at to (see Proposition 2). In that situation, the solution turns out to be defined
only in an interval [T, oo) where T = 0(^~7) when to —> oo. In order to circumvent
that difficulty, we proceed as follows. For given (w+,^+) we choose to large and we
construct the solution (w^.^o) of (15) with initial condition (w+.^o^o) + ^+) at
to. Estimating the difference {wto — w-^-, ̂ o — (po ~ '0+)? w^ show that the solution
can be extended to a fixed interval [T, oo) independent of to. We can then take the
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limit of (wto, Vto) as to -> oo, thereby obtaining the required solution (w, y) of (15)
(see Proposition 4).

The extension of the previous construction to the general case 0 < 7 < 1 proceeds
as follows. Let p > 0 be an integer. We expand w and y as

^ = S w^ + 9p+i = w? + 9p+i
0<m<p

^ = £ ^m + ^p+1 = 0p + ̂ p-H
0<m<p

with the understanding that as t -> oo

w^)=o(r^) , g^)=o(r^)

(21)

^(^) = 0 (^-(m+ih) ^ ^^(^) = ̂  (^-(p+ih) .
(22)

Substituting (21) into (15) and identifying the various powers of (~7 yields the
system of equations

9f w^i = (2t2)-1 ^ (2V^-V+(A^.))w^
0<J<:m

(23)
(9,^^i=(2<2) x ^ V^-.V^-.+r7 ^ 5o(w^w^i_,)

0<j<m o<j<m4-l

for 0 < m + 1 < p.
The system (23) is triangular and can be solved by successive integrations over

time, with initial conditions

wo(oo) = w+ , w^(oo) =0 for m > 0

(^(1)=0 f o r 0 < m < p ,
(24)

thereby reproducing the asymptotic behaviour (23) at least for 0 < m < p and
{p + 1)7 < 1. One can then show that for (p + 2)7 > 1, one can construct solutions
(w, y) of (15) satisfying the asymptotic behaviour

w{t) - Wp(t) = 0 (r^)7)

y(t) - ̂ (t) - ̂  = 0 (t1-^^)
(25)

(see Proposition 4).
The previous constructions enable us to define the preliminary wave operator for

the system (15) as the map

Qo : (w+^+) -^ (w,y) (26)

where (w, y) is the solution of (15) with asymptotic behaviour (25). Combining (26)
with (10) yields a map

(w+,^+) —> (w,(^) —> u = M Dexp{-iy)w
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which is however unsatisfactory as a wave operator for (p for two reasons. Firstly
it depends on too many variables, namely on (^+,^4-), instead of only w^. = Fu^.
Secondly it has no chance of being injective since the same u can be obtained from
different pairs (w,y?). We now briefly discuss that problem. Two solutions (w,(^)
and (w'.y?') of the system (15) are said to be gauge equivalent if they give rise to
the same n, namely ifexp(—zy?)w = expf^—zy/)^. .Similarly, two pairs of asymptotic
variables (w+,^4.) and (w^,^) are said to be gauge equivalent if exp(—w-^)w^. =
exp(—%^)w^. One can then show that gauge equivalent solutions of the system (15)
have gauge equivalent asymptotic variables, and conversely that gauge equivalent
pairs of asymptotic variables have gauge equivalent images under Qo- One then
defines the wave operator for u as the map

0:^4- —> (Fz^, 0) —> (w, y) —>u= M D exp(~zy0w (27)

and that map is injective.
We now substantiate the previous heuristic discussion with mathematical state-

ments. We first define the function spaces where to solve the system (15). We look
for (w, (p) such that

(w, ̂ -^) e (C n L°°) (J, ̂  © Y1) (28)

for some interval I = [T.oo), where k and t are positive integers, H1^ is the usual
Sobolev space, and

Y^ = L°° n H^ n H^2^1 n H^2

where ro = oo for n even, r-o = 2n for n odd, and H^ are the homogeneous Sobolev
spaces. We shall use the notion | • |^ and | • \i for the norms in Hk and V^, ambiguity
being eliminated by the context. Pairs of integers (A:, t) will be said to be admissible
if

k ^ £ , t > n/2

i + 2 + 7 < Min(n/2 + 2A-, n + k)

k> n/2 if £+2+^=n+k

k > 2 if 7 = 1 and n is even .

Admissible pairs exist only for n > 3, and our results hold only in that case. If (k, £)
is admissible, so is also {k+j,£+j) for any positive integer j.. For n = 3 , 0 < 7 ^ 1 ,
the pair (2,2) is admissible.

For simplicity, we state the results by giving the estimates in the form appropriate
to the case where 7~1 is not an integer. If 7~1 is an integer, additional logarithms
occur in the estimates. In all the subsequent results, we assume that n >_ 3 and
0 < 7 < 1 .

We first state the results on the Cauchy problem for the system (15) with finite
initial time.
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Proposition 2. Let ( k , £ ) be an admissible pair and let (wo,^o) € ̂  ® Y^ Then
there exists To = To(wo,(po) such that for all to ^ To, the system (15) with initial
data w(to) = Wo, y{to) = ^-7^o has a unique solution (w, y) such that

(w, r-1^) e (c n L°°) ([r, oo), ̂  ® y^) (29)

for some T <, to. One can take T = C T^ ^~7 and the solution satisfies the estimate

|̂ )|, <C(Max(Mo))1"7 . (30)

Note that neither T nor the estimate (30) are uniform in to. The main ingredient
in the proof of Proposition 2, as well as in those of the subsequent ones, consists
of energy estimates. In the subsequent results, that method, of proof will produce
various losses of derivatives.

The next result is the existence of asymptotic variables (w+, ^4.) for the solutions
of the system (15) obtained through Proposition 2.

Proposition 3. Let (k,£) be an admissible pair. Let p be an integer such that
(p + 2)7 > 1. Let (w, y) be a solution of the system ( 1 5 ) such that

(w, r-1^) e (C n L°°) ([r, oo), j^+Max(p+i,2) ̂  y^P) (31)
for some T > 1. Then

( 1 ) The following limit exists

lim w(t) = w+ (32)
t—>00 ' '

strongly in H^ and weakly in H^^.
(2) Let Wp and (j)p be defined by (21) in terms of the solutions of the system (23)

with initial condition (24). Then the following limit exists

}^v(t) - (f)p{t) = ̂  (33)

strongly in Y^~1. Furthermore the following estimates hold

\w(t) - Wp(t)\,_,^ C t-^^
(34)

W}-W-^\^<Ct1-^^ .

The main technical result is the existence of solutions (w, y) of the system (15) with
prescribed asymptotic variables (w+,^4-).

Proposition 4. Let {k,£) be an admissible pair. Let p be an integer such that
(p+ 2)7 > 1. Let W+ € ^+Max(p+l,2) ̂  ̂ fi^ ̂  ̂  ̂  ^ ̂  ̂  ̂  ^ ^

Proposition 3. Let ̂  e Y^1. Then there exists T = T(w+,^) and there exists a
unique solution (w,y) of the system (15) such that

(w, ̂ -^) 6 (C n L°°) ([T, oo), Hk © Y^ (35) = (29)
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and such that the estimates (34) hold.

With Proposition 4 available, one can define the auxiliary wave operator Qo by
(26) and the wave operator Q by (27). In order to describe the asymptotic behaviour
of solutions u of (1) in the range of Q, we need additional notation. We define the
operator

J(t) = x + zW = M(t) D(t) z'V D(tY M{tY (36)
so that in view of (10)

J^ u{t) = M(t) Z5(^)(^V)mexp(-^(<))w(<) .

One sees easily that if (w,y?) satisfy (35), then exp(~z^)w e C([T, oo), ^A>), so
that ^ obtained through (10) from such a (w,y) belongs to the space ^([T.oo))
defined by

X k ( I ) = { ^ < J ( t ) > k u e C ( I . L 2 ) ] (37)

where < • >=< 1 + | • |2 >1/2. In particular it follows from Proposition 4 that the
wave operator Q maps F^+Max(p+i,2) ̂  ̂ ^ ̂  ̂  suitable A: and T.

We finally collect the properties of solutions u of (1) in the range of Q that follow
from the previous results.

Proposition 5. Let k be the first member of an admissible pair. Let p be an integer
such that (p+ 2)7 > 1. Let u^ € F^+Max(p+i,2) j^

( 1 ) There exists T = T{u^) and there exists a unique solution u of the equation
( 1 ) defined in [T, oo) which can be represented through ( 1 0 ) in terms of a solution
(w,y) of the system ( 1 5 ) obtained in Proposition 4 with w+ = Fu^., ̂  = 0. The
solution u belongs to Xk([T,oc)).

(2) The map Q : zz+ -^ u is injective.
(3) u satisfies the estimate

\\< J(t} >k {exp(icf>^x/t))u(t) - M(t) D(t) F u^} ^ < C t1-^2^ . (38)

(4) Let r satisfy 0 < 6(r} = n/2 - n/r < Min(A:,n/2), 6(r) < n/2 if k = n/2.
Then u satisfies the estimate

|| u(t) - exp (-z^ x/t)) M(t) D(t) F u+ \\r < C t1-^2^-6^ (39)

where | ' \\r denotes the norm in 27 (IT?72).

Remark. The asymptotic estimates (34) (38) (39) hold in the form stated here for
simplicity only under the condition (p+ 1)7 < 1. They have to be suitably modified
if that condition does not hold (see [6]).
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