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Journees Equations aux derivees partielles
Saint-Jean-de-Monts, 31 mai-4 juin 1999
GDR 1151 (CNRS)

Propagation of singularities in many-body
scattering in the presence of bound states

Andras Vasy

Abstract

In these lecture notes we describe the propagation of singularities of tem-
pered distributional solutions u E S ' of (H—\)u = 0, where H is a many-body
Hamiltonian . H ' = A + V , A ^ O , y = V^^Va, and A is not a threshold of
jy, under the assumption that the inter-particle (e.g. two-body) interactions
Va are real-valued polyhomogeneous symbols of order —1 (e.g. Coulomb-type
with the singularity at the origin removed). Here the term 'singularity? pro-
vides a microlocal description of the lack of decay at infinity. Our result is
then that the set of singularities of u is a union of maximally extended broken
bicharacteristics of H. These are curves in the characteristic variety of Jf,
which can be quite complicated due to the existence of bound states. We use
this result to describe the wave front relation of the S-matrices. Here we only
present the statement of the results and sketch some of the ideas in proving
them, the complete details will appear elsewhere.

1. Introduction.

In these lecture notes we describe the propagation of singularities of generalized
eigenfunctions of a many-body Hamiltonian H = A + V ^ V = ^^ la, on R71 under
the assumption that the inter-particle interactions Va are real-valued polyhomo-
geneous symbols of order —1 (e.g. Coulomb-type with the singularity at the origin
removed). More precisely, we use the 'many-body scattering wave front set* WFsc(^)
at infinity for tempered distributions u 6 <?'(R71), and show that for u € ^'(R") sat-
isfying (H — \)u = 0, WFsc(^) is a union of maximally extended generalized broken
bicharacteristics of H. broken at the collision planes. Here WFsc(^) provides a mi-
crolocal description of the lack of decay of u modulo ^(R71), similarly to how the
usual wave front set describes distributions modulo C°° functions.

The definition of generalized broken bicharacteristics is quite technical due to
the presence of bound states in the subsystems. However, if these bound states are
absent, our definition becomes completely analogous to Lebeau's definition [17] for
the wave equation in domains with corners. Indeed, in this case the propagation
Partially supported by NSF grant #DMS-99-70607.
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result itself, which was proved in [31], is a direct (C°°-type) analogue of Lebeau's
result for the propagation of analytic singularities for solutions of the wave equation
in domains with corners.

If there are bound states in the subsystems, but either the set of thresholds
is discrete, or H is a four-body Hamiltonian, the geometry of generalized broken
bicharacteristics is not much more complicated than in Lebeau's setting. The general
definition reflects that when particles collide, the total energy as well as the external
momentum is preserved. The complication in the presence of bound states is that
kinetic energy is not preserved, even asymptotically. In summary, our results provide
a connection between quantum and classical objects, just as Lebeau's results connect
the wave equation and geometric optics.

We also state the corresponding result in the 'limiting absorption principle' set-
ting, namely that under certain assumptions on WFsc(/), -R(A ± z'O)/ are defined,
and WFsc(-R(A + z0)/) is a subset of the image of WFsc(/) U R-(\) under the for-
ward broken bicharacteristic relation. Here J?-(A) is the outgoing 'radial set7. Such
a result makes the 'radial-variable' propagation estimates that have been used in
many-body scattering, especially as derived in the works of Gerard, Isozaki and
Skibsted [6, 7], more precise.

We use this result to analyze that the wave front relation of the scattering ma-
trices (S-matrices). These connect the incoming and outgoing data of generalized
eigenfunctions of H , so one expects that their singularities are described by consid-
ering the limit points of generalized broken bicharacteristics 7 = ^(t) as t -^ ±00.
In fact, in addition to the propagation of singularities result, the only ingredient
that is required for this analysis is a good approximation for the incoming Poisson
operators with incoming state a near the incoming region, and similar results for
the outgoing Poisson operators with, say, outgoing state /?. In general, one expects
a WKB-type construction, essentially as in Hadamard's parametrix construction.
Indeed, this is what Melrose and Zworski do in the geometric two-body type set-
ting, [21]. In the Euclidean many-body setting this construction has been done by
Skibsted [28] in the short-range and by Bommier [1] in the long-range setting, in the
latter case by adopting the construction of Isozaki and Kitada [15], at least under the
assumption that the energies of the states a, /? are below the continuous spectrum
of the corresponding subsystem Hamiltonians. Such a construction is unnecessary if
Vc are Schwartz, for then the product decomposition is sufficiently accurate to give
a good approximation for the Poisson operator. We thus obtain the following result.

Theorem. Suppose that H is a many-body Hamiltonian, and X is not a threshold or
(L2-) eigenvalue of H. Suppose also that either a and f3 are channels such that the
corresponding eigenvalues 60; eg^ of the subsystem Hamiltonians ha, h^, are in the
discrete spectrum of ha and h^ respectively, or that Vc is Schwartz for all c. Then
the wave front relation of the S-matrix S^a (A), is given by the generalized broken
^characteristic relation of H as stated precisely below in Theorem 8.

Special cases, which have already been analyzed, include the free-to-free S-matrix
in three-body scattering [29, 9, 33], or indeed in many-body scattering under the
additional assumption that there are no bound states in any subsystem [31]. In these
cases the wave front relation is given by the broken geodesic relation, broken at the
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collision planes, on §71 1 at distance TT. In both cases, one can naturally extend
the results to geometric many-body type problems on asymptotically Euclidean
manifolds.

Also, Bommier [1] and Skibsted [28] have shown that the kernels of the 2-cluster
to free cluster and 2-cluster to 2-cluster S-matrices are smooth (except for the diag-
onal singularity if the 2-clusters are the same), and previously Isozaki had showed
this in the three-body setting [12]. We remark that (under our poly homogeneous
assumption) the proofs of Bommier and Skibsted in fact show that the 2-cluster to
same 2-cluster S-matrix is a (non-classical, if the potentials are long-range) pseudo-
differential operator which differs from the identity operator by an operator of order
-1. In our geometric normalization this means that they are Fourier integral oper-
ators associated to the geodesic flow on the sphere at infinity to distance TT (along
the cluster).

We remark that the results of these notes would remain valid if we assumed only
that Va € 5~p(Xa), p > 0, as customary. In fact, the proof of the propagation of
singularities for generalized eigenfunctions remains essentially unchanged, and the
only difference in the above Theorem is that the parametrix for the Poisson operators
is not as explicit, cf. [31, 30]; instead, one needs to use the constructions of Isozaki-
Kitada [15] (as presented by Skibsted and Bommier) directly. The reason for the
polyhomogeneous assumption is that the proofs are somewhat nicer, especially in
notation, and it is a particularly natural assumption to make in the compactification
approach we adopt.

Our main tool in proving the propagation of singularities results consists of
microlocally positive commutator estimates, i.e. on the construction of operators
which have a positive commutator with H in the part of phase space, say U, where
we wish to conclude that a generalized eigenfunction u has no scattering wave front
set. These commutators are usually negative in another region of phase space,
namely backwards (or forwards, depending on the construction) along generalized
broken bicharacteristics through U. We thus assume the absence of this region from
WFsc(^), and conclude that the positive commutator region, [/, is also missing from
WFsc(^). Such techniques have been used by Hormander, Melrose and Sjostrand [10,
20] to show the propagation of singularities for hyperbolic equations (real principal
type propagation) such as the wave equation, including in regions with smooth
boundaries. Indeed, the best way to interpret our results is to say that H — X is
hyperbolic at infinity. In two-body scattering the analogy with the wave equation in
domains without boundary is rather complete; this was the basis ofMelrose's proof of
propagation estimates for scattering theory for 'scattering metrics5 in [19]. In many-
body scattering, the lack of commutativity of the appropriate pseudo-differential
algebra, even to top order, makes the estimates (and their proofs) more delicate.
We remark that, as can be seen directly from the approach we take, the wave front set
estimates can be easily turned into microlocal estimates on the resolvent considered
as an operator between weighted Sobolev spaces; wave front set statements are a
particularly convenient way of describing propagation.

Positive commutator estimates have also played a major role in many-body scat-
tering starting with the work of Mourre [22], Perry, Sigal and Simon [23], Froese and
Herbst [5], Jensen [16], Gerard, Isozaki and Skibsfed [6, 7] and Wang [34]. In partic-
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ular, the Mourre estimate is one of them; it estimates i[H, w ' D^ + D^ • w]. This and
some other global positive commutator results have been used to prove the global
results mentioned in the first paragraph about some of the S-matrices with initial
state in a two-cluster. They also give the basis for the existence, uniqueness and
equivalence statements in our definition of the S-matrix by asymptotic expansions;
these statements are discussed in [13, 14, 32] in more detail.

More delicate (and often time-dependent) commutator estimates have been used
in the proof of asymptotic completeness. This completeness property of many-body
Hamiltonians was proved by Sigal and Softer, Graf, Dereziriski and Yafaev under
different assumptions on the potentials and by different techniques [24, 25, 27, 26,
8, 2, 35]. In particular, Yafaev's paper [35] shows quite explicitly the importance of
the special structure of the Euclidean Hamiltonian. This structure enables him to
obtain a (time-independent) positive commutator estimate, w-hich would not follow
from the indicial operator arguments of [33, 31, 30], and which is then used to prove
asymptotic completeness.

We briefly mention the main idea, as presented in Froese's and Herbst's proof of
the Mourre estimate [5], in showing that the commutator of i^(H)A^(H) with H
is positive, and in particular point out the role played by bound states. Here A is a
certain self-adjoint operator, and ^ € C^°(R) is used to localize near the energy A,
so it is identically 1 near A, supported sufficiently close to it. Thus, one shows (e.g.
by a principal symbol calculation) that i[^(H)A^(H),H] > C^(H)2 + K where
C > 0, and K is compact. Multiplying through by zp^(H) from both sides, where
^i is such that ^ = 1 on supp^i, gives a similar estimate with '0 replaced by ^i,
and K replaced by ^(H)K^(H). But if A ^ spec^(Jf), then ^(H) -> 0 strongly
as suppz^i -^ {A}, so as K is compact, \\^{H)K^(H)\\ -^ 0 as supp^i -^ {A}.
Given any e > 0, we can thus arrange that ^\(H)K^(H) ^ -6. Substituting this
into our inequality and multiplying it through by ^(H) from both sides, where
^2 is such that 0i = 1 on supp^, gives i[^(H)A^(H),H] > {C - e)^(H)'2,
i.e. eliminates the compact error term if ^2 has sufficiently small support near A.
Froese and Herbst use an inductive argument, starting at the free cluster, where
a positivity estimate is trivial, to prove the Mourre estimate. In our setting, we
perform such estimates for the indicial operators of a commutator, again starting
at the free cluster. In the presence of bound states, the positivity will not come
simply from such an argument; instead, one must have a positive commutator in
the tangential (i.e. external) variables of the cluster to which the bound state is
associated, positive when localized to the bound states (via the spectral projection
ofH).

These notes mostly consist of a summary of the results of [30], also reviewing
some of the results of [31].

I am very grateful to Richard Melrose and Maciej Zworski for numerous very
fruitful discussions; in particular, I would like to thank Richard Melrose for his
comments on these lecture notes. I am grateful to Maciej Zworski for introducing
me to the work of Gilles Lebeau [17]. If there are no bound states in any subsystems,
many-body scattering is philosophically and, to a certain extent, technically (e.g.
the structure of generalized broken bicharacteristics) is very similar to the wave
equation in domain with corners. Thus, Lebeau's paper played an important direct
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role in my paper [31], and remained philosophically important while working on
the present manuscript. I would also like to thank Andrew Hassell, Rafe Mazzeo,
Erik Skibsted and Jared Wunsch for helpful discussions, their encouragement and
for their interest in this research.

2. Notation and detailed statement of results.

Before we can state the precise definitions, we need to introduce some basic (and
mostly standard) notation. We refer to [3] for a very detailed discussion of the
setup and the basic results. We consider the Euclidean space R71, and let g be
the standard Euclidean metric on it. We assume also that we are given a (finite)
family X of linear subspaces Xa, a € J, of W1 which is closed under intersections
and includes the subspace Xi = {0} consisting of the origin, and the whole space
Xo = R71. Let X° be the orthocomplement of Xa. We write §a and g " for the
induced metrics on Xa and X° respectively. We let ̂  be the orthogonal projection
to X^ TTa to Xa. A many-body Hamiltonian is an operator of the form

J^A+^TTTK; (2.1)
aei

here A is the positive Laplacian, Vo == 0, and the Va are real-valued functions in an
appropriate class which we take here to be polyhomogeneous symbols of order -1
on the vector space Xa to simplify the problem:

Va 6 5^(Xa). (2.2)

In particular, smooth potentials Va which behave at infinity like the Coulomb po-
tential are allowed. Since {^YVa is bounded and self-adjoint and A is self-adjoint
with domain H2(Rn) on L2 = L2(Rn), H is also a self-adjoint operator on L2 with
domain ^(R71). We let R(\) = (H - A)-1 for A € C \ R be the resolvent of H.

There is a natural partial ordering on I induced by the ordering of X° by in-
clusion. (Though the ordering based on inclusion of the Xa would be sometimes
more natural, here we use the conventional ordering, we simply write Xa C X^ if
the opposite ordering is required.) Let Ji = {1} (recall that Xi = {0}); 1 is the
maximal element of J. A maximal element of I \ Ji is called a 2-cluster; 1'i denotes
the set of 2-clusters. In general, once 4 has been defined for k = 1 , . . . . m-1, we let
Im (the set of m-clusters) be the set of maximal elements ofJ^ = I\U^^Ik, if/^ is
not empty. If J^ = {0} (so 1^ is empty), we call H an m-body Hamiltonian. For
example, if I ^ {0,1}, and for all a, b ^ {0,1} with a -^ b we have Xa n X^ = {0},
then H is a 3-body Hamiltonian. The TV-cluster of an TV-body Hamiltonian is also
called the free cluster, since it corresponds to the particles which are asymptotically
free.

Our goal is to study generalized eigenfunctions of H, i.e. solutions u € S^W) of
(H — \)u = 0. Since H — A is an elliptic partial differential operator with smooth
coefficients, (H - \)u 6 ^(R") implies that u G C00^71). Thus, the place where
such u can have interesting behavior is at infinity. Analysis at infinity can be viewed
either as analysis of uniform properties, or as that of properties in the appropriate
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compactification of W1. We adopt the second point of view by compactifying R" as
in [19]. Thus, we let X = S .̂ to be the radial compactification of R" (also called
the geodesic compactification) to a closed hemisphere, i.e. a ball, and S71"1 = 9S^.
Recall from [19] that RC : W1 -> S .̂ is given by

RC(w) = (1/(1 + H2)1/2^! + |w|2)1/2) e S^ c R^, w 6 R71. (2.3)

Here we use the notation RC instead of SP, used in [19], to avoid confusion with the
standard stereographic projection giving a one-point compactification of R71. We
write the coordinates on R71 = Xa © Xa as (wa, w"). We let

Xa = cl(RC(Xa)), Ca = X, n <9S^. (2.4)

Hence, Ca is a sphere of dimension ria — 1 where n^ = dimXa. We also let

C = {Ca : a e J}. (2.5)

Thus, Xo = S^ = X, Co = <9§^ = S71-1, and a < b if and only if ̂  C Go.
We note that if a is a 2-cluster then Ca n (7& = 0 unless Ca C Q,, i.e. b < a. We

also define the ^singular part5 of Ca as the set

Ca^=^a(CbnCa)^ (2.6)

and its 'regular part' as the set

C'a = Ca \ U^aCb = Ca \ Casing. (2.7)

For example, if a is a 2-cluster then Casing = 0 and C^ = Ca.
We usually identify (the interior of) S^ with R71. A particularly useful boundary

defining function of S .̂ is given by x C C00^1^) defined as x = r~1 = |w|~1 (for
r > 1, say, smoothed out near the origin); so S71"1 = (9S^_ is given by x = 0, x > 0
elsewhere, and dx ^. 0 at S71-1. We write %g(S^) and 5^g(R71) interchangeably.
We also remark that

^gTO^-^00^). (2.8)

We recall that under RC, C°°(S^), the space of smooth functions on S^. vanishing
to infinite order at the boundary, corresponds to the space of Schwartz functions
S^), and its dual, ^"^(S^), to tempered distributions ^(R"). We also have the
following correspondence of weighted Sobolev spaces

7^(§^) = H^1 = ff^(R71) = (w)-W(r1) (2.9)

where {w) = (1 + |w|2)1/2.
Corresponding to each cluster a we introduce the cluster Hamiltonian H^ as an

operator on L2(Xa) given by

Ha=^+^\^ (2.10)
b<a
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A being the Laplacian of the induced metric on X". Thus, if H is a A^-body
Hamiltonian and a is a ^-cluster, then AT0 is a (N + 1 - A:)-body Hamiltonian. The
L2 eigenfunctions of H0^ (also called bound states) play an important role in many-
body scattering; we remark that by a result of Froese and Herbst, [4], spec^Jf0) C
(-00,0] (there are no positive eigenvalues). Moreover, speCpp(H°') is bounded below
since H " differs from A by a bounded operator. Note that X° == {0}, H° = 0, so
the unique eigenvalue of H° is 0.

The eigenvalues of H" can be used to define the set of thresholds of Hb. Namely,
we let

Aa=U^speCpp(^6) (2.11)

be the set of thresholds of H0^, and we also let

A^ = Aa U spec^0) = Ub<a spec^6). (2.12)

Thus, 0 € Aa for a ̂  0 and Aa C (-00,0]. It follows from the Mourre theory (see
e.g. [5, 23]) that Aa is closed, countable, and spec^T^) can only accumulate at Aa.
Moreover, J?(A), considered as an operator on weighted Sobolev spaces, has a limit

R(\ ± iO) : H^(S^ -> H^^) (2.13)

for I > 1/2, I ' < —1/2, from either half of the complex plane away from

A =Ai aspect). (2.14)

In addition, L2 eigenfunctions of H0^ with eigenvalues which are not thresholds are
necessarily Schwartz functions on Xa (in fact, they decay exponentially, see [4]). We
also label the eigenvalues of Ha, counted with multiplicities, by integers m, and we
call the pairs a = (a, m) channels. We denote the eigenvalue of the channel a by e^,
write ipa for a corresponding normalized eigenfunction, and let ea be the orthogonal
projection to ̂  m L^X").

The phase space in scattering theory is the cotangent bundle T*^. Again, it is
convenient to consider its appropriate partial compactification, i.e. to consider it as
a vector bundle over S^. Thus, consider the set of all one-forms on R71 of the form

n

Y^cijdwj (2.15)
j=i

where aj € C°°(S^) (we drop RC from the notation as usual). This is then the set
of all smooth sections of a trivial vector bundle over S^, with basis d w i , . . . . dwn.
Following Melrose's geometric approach to scattering theory, see [19], we consider
this as the (dual) structure bundle, and call it the scattering cotangent bundle of S^,
denoted by ^T*^. Note that T*R71 can be identified with R71 x R71 via the metric
g . correspondingly ^T^S^ is identified with S^. x K71, i.e. we simply compactified
the base of the standard cotangent bundle. We remark that the construction of
scy*§^ ^g completely natural and geometric, just like the following ones, see [19], or
Section 3 for a summary.
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However, in many-body scattering ^T^S^. is not the natural place for microlocal
analysis for the very same reason that introduces the compressed cotangent bundle in
the study of the wave equation on bounded domains. We can see what causes trouble
from both the dynamical and the quantum point of view. Regarding dynamics, the
issue is that only the external part of the momentum is preserved in a collision,
the internal part is not; while from the quantum point of view the problem is
that there is only partial commutativity in the algebra of the associated pseudo-
differential operators, even to top order. To rectify this, we replace the full bundle
^T^ = C^ x R71 over C'a C S71-1 by ^T^Xa =C^x Xa, i.e. we consider

^t^-Ua^T^Xa. (2.16)

Over (7^, there is a natural projection TTa : ̂ T^/S^. —^ ^T^Xa corresponding to the
pull-back of one-forms; in the trivialization given by the metric it is induced by the
orthogonal projection to Xa in the fibers. By putting the TTa together, we obtain a
projection TT : ^Tgn-iS^ -^ ̂ t^. We put the topology induced by TT on ^S^.
This definition is analogous to that of the compressed cotangent bundle in the works
of Melrose, Sjostrand [20] and Lebeau [17] on the wave equation in domains with
smooth boundaries or corners, respectively.

We also recall from [19] that the characteristic variety So (A) of A — A is simply the
subset of ^Tgn-iS^- where g — \ vanishes; g being the metric function. If Ai = {0},
the compressed characteristic set of H — \ will be simply 7r(So(A)) C ^T^S^.. In
general, all the bound states contribute to the characteristic variety. Thus, we let

S6(A) = {^ € "r^Y, : A - |^|2 € spec,, H^ C "T^Y,; (2.17)

note that [<^[2 is the kinetic energy of a particle in a bound state of Hb. If Ca C Q),
there is also a natural projection TT^ : ̂ T^, X^ —> ^T^i Xa (in the metric trivializa-
tion we can use the orthogonal projection X^ —^ Xa as above), and then we define
the characteristic set of H — A to be

E(A) = UA(A), E,(A) = Uc^c^a^bW) n "T^Y,, (2.18)

so E(A) C ̂ S^. We let ̂  be the restriction of ̂  : ̂ T^X^ -^ E(A) to S&(A).
We next recall from [31] the definition of generalized broken bicharacteristics in

case there are no bound states in any of the subsystems. In fact, in this case the
word 'generalized5 can be dropped; for the generalized broken bicharacteristics have
a simple geometry as stated below. First, note that the rescaled Hamilton vector
field of the metric function ^, i.e.

2(w)^ • 9^ e V(r*]T) = V(ir x IT) (2.19)

extends to a smooth vector field, ^Hg e V^T^) = V(§^ x R71), with S^ consid-
ered as the radial compactification of 1R71; in fact, ^Hg is tangent to the boundary
SCT^* S'n _ ^-1 v TR^lg^-iS>^ — Q) X K .

Definition. Suppose Ai == {0}, and I == [a,/?] is an interval. We say that a
continuous map 7 : I —> E(A) is a broken bicharacteristic of H — A if there exists
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a finite set of points ;̂ 6 J, a = to < t^ < . . . < ^_i < tk = ,/? such that for each
J? 7l(^,^+i) is the image of an integral curve of ^Hg in So(A) under TT. If / is an
interval (possibly R), we say that 7 : J —^ E(A) is a broken bicharacteristic of J7 — A.
if the restriction of 7 to every compact subinterval of I is a broken bicharacteristic
in the above sense.

Here 7(J) C S(A) = 7r(Eo(A)) corresponds to the conservation of kinetic energy
in collisions (since there are no bound states), and the use of the compressed space
sc^*g^ gi^ows that external momentum is conserved in the collisions. It turns out,
see [31], that 7 is essentially the lift of a broken geodesic on S7}. of length 7 r ( i f / = R,
otherwise shorter), broken at the collision planes, i.e. at C. In particular, even if
I = R, it has only a finite number of breaks, and in fact, there is a uniform bound
on the number of such breaks (depending only on the geometry, i.e. on C, not on 7).

The definitions are less explicit if Ai ^ {0}, but they essentially still state that
the total energy and the external momentum are preserved in collisions. Thus,
generalized broken bicharacteristics will be continuous maps 7 defined on intervals /,
7:7-4- S(A) with certain appropriate generalization of the integral curve condition
described above. In order to take the bound states into consideration, we also need
to consider the rescaled Hamilton vector fields ̂ H^ of the metric g^ in the subsystem
b. Thus, under the inclusion map

z, : ̂ X, ̂  "T^ (2.20)

induced by the inclusion X^ '—> R" in the fibers, (i^^H^ = ̂ Hg (i.e. the restriction
of the vector field ^Hg to ^T^A^, considered as a subset of ^T^S^). Thus, we
require that lower bounds on the Hamilton vector fields ^H^ applied to Tr-invariant
functions, i.e. to functions / 6 C^Tg^iS^) such that /(Q == /(<f) if7r(^) = 7r(<f),
imply lower bounds on the derivatives of f^ along 7. Here f^ is the function induced
by/on^S^so/^oTr .

Definition 1. A generalized broken bicharacteristic of H — A is a continuous map
7 : I —> S(A), where / C R is an interval, such that for all to € I and for each sign
+ and — the following holds. Let <fo = 7(^0)5 suppose that <^o € ^T^Xa- Then for
all Tf-invariant functions / € C^T^-iS^.),

D^ o 7)(<o) > in^^/^o) : ^o € Tr^o), C, C C,}. (2.21)

Here D^ are the one-sided lower derivatives: if g is defined on an interval J,
(D^W = \immft^±(9(t) - gW)/{t - to).

Although it is not apparent, this definition is equivalent to the previous one if
Ai = {0}. Moreover, in four-body scattering, even if Ai 7^ {0}, one can describe
the generalized broken bicharacteristics piecewise as projections of integral curves
of^Hg. In general many-body scattering, the lack of conservation of kinetic energy
makes such a description harder, but if Ai is discrete, we obtain a description that
parallels the one above. More precisely, suppose that Ai is discrete and 7 : R —^ E(A)
is a continuous curve. Then 7 is a generalized broken bicharacteristic of H— A if and
only if there exist to < t^ < t^ < ... < tk such that 7|[^,^^i]7 as we!! ̂  7|(-oo,<o] an^
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7|[4,4-oo), are the projections of integral curves of the Hamilton vector field ^Jf0 for
some a. In addition, there is a uniform bound on k (independent of 7), depending
only on C and Ai. Similar results hold if the interval of definition, R, is replaced by
any interval.

As mentioned in the introduction, 'singularities' (i.e. lack of decay at infinity) of
u € S ' are described by the many-body scattering wave front set, WFsc(^), which
was introduced in [31], and which describes u modulo Schwartz functions, similarly
to how the usual wave front set describes distributions modulo smooth functions.
Just as for the image of the bicharacteristics, ^T^S^ provides the natural setting
in which WFsc is defined: WFsc(^) is a closed subset of^T*^. The definition of
WFsc(^) relies on the algebra of many-body scattering pseudo-differential operators,
also introduced in [31].

Here we will not define these; rather w-e will translate our results into statements
on the S-matrices where the usual wave front set can be used. However, at the end of
these notes we give a short discussion of the required constructions. In addition, in
the two-body setting, when ̂ S^ = ̂ r*^, WFsc is just the scattering wave front
set WFgc introduced by Melrose, [19], which in turn is closely related to the usual
wave front set via the Fourier transform. Thus, for (o;,^) € ^Tg^.iS^, considered as
S71-1 x R71 = (9S^ x IT, (cj.O ^ WFsc(^) means that there exists (f> e C°°(S^) such
that (f)(cj) ̂  0 and ^(^u) is C°° near <^. If we employed the usual conic terminology
instead of the compactified one, we would think of (j) as a conic cut-off function in
the direction u}. Thus, WFsc at infinity is analogous to WF with the role of position
and momentum reversed. We also remark that we state all of the following results
for the absolute wave front sets (i.e. we work modulo Schwartz functions), but they
have complete analogues for the relative wave front sets (working modulo weighted
Sobolev spaces); indeed, it is the latter that is used to prove the results on the
former.

Our main result is then the following theorem, in which we allow arbitrary thresh-
olds, and which describes the relationship between WFsc(^) and generalized broken
bicharacteristics, if, for example, {H — \)u = 0.

Theorem 2. Let u € ^(R^ A ^ Ai. Then

WFsc(u)\WFsc((H-\)u) (2.22)

is a union of maximally extended generalized broken ^characteristics of H — \ in
E(A)\WF^((^-A)n).

We remark that the statement of the theorem is empty at points ^o £ sc^ Xa
at which ^H^^o) = 0 for some <^o £ ^(^o) and some b with Ca C Q,. Indeed, at
such points the constant curve (7^) == <^o for all t in some interval) is a generalized
broken bicharacteristic. A simple calculation shows that the set of these points <^o
is J?4-(A)UJ?-(A), where

R±W = {^ e "T^Xa : 36, Ca CC^X- r(Q2 e spec^(^), ±r(0 > 0} (2.23)
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are the incoming (+) and outgoing (—) radial sets respectively, and r is the sc-dual
variable of the boundary defining function x^ so in terms of the Euclidean variables

r = -v-1; (2.24)|w|

see the next section for further details. Hence, the theorem permits singularities
to emerge 'out of nowhere5 at the radial sets. Although we do not prove that this
indeed does happen, based on general principles, this appears fairly likely. Moreover,
the optimality of Theorem 2 if Ai == {0} follows from [9, 29], see the remarks about
this in [31]; the amplitude of the reflected 'wave7 is given (to top order) by the
appropriate subsystem S-matrix.

There is a similar result for WFsc(^), u = R{\ + i0)f', namely that WFsc(^) \
WFsc(/) is the image ofWFsc(/)UJtL(A) under forward propagation, if e.g. / 6 ^r'5,
s > 1/2. The set J%-(A) appears here since there can be maximally extended
generalized broken bicharacteristics which are either not disjoint from J?-(A), or
simply whose closure is not disjoint from J?-(A). In particular, even if/ is Schwartz,
WFsc(^) is not necessarily a subset of .R-(A), rather a subset of its image under
forward propagation. Indeed, by duality, this is exactly what gives rise to the
conditions on WFsc(/) under which u = R(\ + i0)f can be defined. To make it
easier to state these results, we make the following definition.

Definition 3. Suppose K C S(A). The image ^+(K) of K under the forward
broken bicharacteristic relation is defined as

^^.(K) ={^o ^ S(A) : 3 a generalized broken bicharacteristic 7 : (—00,^0] —^ S(A)
s.t. 7(^0) = ̂  7((-oo^o]) n K ^ 0}.

(2.25)

The image $-(J^) of K under the backward broken bicharacteristic relation is de-
fined similarly, with [to^ +00) in place of (—00,^0]-

Note that ^+(K) = U{eJ<<^+({^}) directly from the definition. The result on the
boundary values of the resolvent is then:

Theorem 4. Suppose that A ^ A, / e <?(R71), and let u = R{\ + z0)/. Then
WFscW C $+(J?-(A)). Moreover, R{X + iO) extends by continuity to v € S^W)
with \Wsc(v) n <&_(J?+(A)) = 0, and for such v,

\Wsc(R{> + iW C ̂ (WFsc{v)) U ̂ (^-(A)). (2.26)

The scattering matrices S^a (A) of H with incoming channel a, outgoing channel
(3 can be defined either via the wave operators, or via the asymptotic behavior
of generalized eigenfunctions. It was shown in [32] that the two are the same,
up to normalization (free motion is factored out in the wave operator definition);
here we briefly recall the second definition. We first state it for short-range Vc {Vc
polyhomogeneous of order ~2 for all c). Thus, for A 6 (c^, oo) \ A and g € (^(C^),
there is a unique u e <?'(R71) such that (H - \)u = 0, and u has the form

^ ^ e-1^^^-^0^2^)^^, + R(\ + z0)/, (2.27)
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where v, € C°°(S^), z;_|c, = g , and / e H^2^(S^), e' > 0. The Poisson operator
PQ,+(A) is the map

P^(A) : C^Q ̂  <S'(ir) defined by Pa,+(A)^ = u. (2.28)

The term R(\ + z'O) has distributional asymptotics of a similar form 'at the channel
/3\ i.e. of the form e^V/Ir^rr-dimco/2((7r6)*^)^^, see [32] for the precise definitions.

Only minor modifications are necessary for Vc € S~^ (X0). Namely, write

la = ̂ H, la = {rJa)\Ca € C°°(Ca), (2.29)

b^a

la is C00 near C^ with simple vanishing at C^ (since & ^ a means Ca ^ C^, hence
Ca n Q, C Casing) ^ so ^7^ is C°° there. Then the asymptotics in (2.27) must be
replaced by

^-,^r-^r^-dimCa/2^/2v^^^^a^^^_^ ^3^

The scattering matrix S^a (A) maps p = 'L'_|^ to ^,+lq- It is also given by the
formula

5,,(A) = 1——((H - A)P^.(A))*P^(A), (2.31)
^ % A / A — 6/3

A > max(6Q,e/?), A ^ A. Here P^,-(A) is a microlocalized version of the outgoing
Poisson operator, microlocalized near the outgoing region for /?, i.e. where r is near
-\/A - e^, see [32]. In fact, we can simply take P^-(A) to be a microlocal (cut-off)
parametrix for P/?,-(A). This formula is closelv related to that of Isozaki and Kitada
[15].

A very good parametrix, Pa,+(A), for Pa,+(A) in the region of phase space where
T is close to \/A — e^ has been constructed by Skibsted [28] in the short-range and by
Bommier [1] in the long-range setting, under the assumption that e^ 6 spec^T^). If
we instead assume that the Vc are all Schwartz, then the trivial (product type) con-
struction gives the desired parametrix. Their constructions enable us to deduce the
structure of the S-matrices immediately from our propagation theorem, Theorem 4
via (2.31) and

P^(A) = P^(A) - R(\ + zO)(H - A)P^(A). (2.32)

Since the parametrix (near the incoming or outgoing sets) is important for turning
the results on the propagation of singularities to wave front set results, in all our
results on the Poisson operators and S-matrices S^a (A) in these notes we make the
following assumption:

either Ca € spec^JT) and e^ 6 spec^(^), or Vc 6 S(XC) for all c. (2.33)

It is easy to describe the wave front set of P^(A)p, g £ ^T00^)- near Us
'beginning point5, i.e. near the (a, +)-incoming set. Namely, it is the union of integral
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curves of^H^ (in ^T^Xa) (which are in particular bicharacteristics of H - A, hence
broken bicharacteristics), one integral curve for each C 6 WF(^) c 5itc(7/; we denote
these integral curves by 7Q,-(C). It is actually convenient to replace the parameter
t of the integral curve by s, the arclength parameter of its projection to Ca. The
relationship between these two is that if we write s = S(t), then S solves the ODE
d S / d t = 2(A - CQ - r(^{t)W2. The reparameterized integral curves are then given
by

Ta = ^\-eacos(s - so), (ya, ̂ a) = \/A - €„ sin(5 - So) exp((s - 5o)sc^)(C)
(2.34)

where s € (^o, ^o + 7r). This defines 7a,-(C) up to replacing t by t - t^ for any fixed
ti e R, so we are abusing the notation slightly. Due to (2.32), Theorem 4 describes
WFsc{Pa^(>)g) elsewhere. A similar result also applies for P/?,-(A); in this case one
simply has to replace the range of the arclength parameter by s e {so - TT, so). We
denote the corresponding integral curves by 7^4- (^).

Definition 5. The forward broken bicharacteristic relation with initial channel a
is defined to be the relation Ua^ C 5*C^ x S(A) given by

7Z^={(C,Oe5*C,xE(A): <M{^})n7a,-(C)^0}. (2.35)

The backward broken bicharacteristic relation with initial channel /3, denoted bv
Tiff- is defined similarly, with <!>+ in place of <&_ and 7^+ in place of 7^.. Finally,
the forward broken bicharacteristic relation with initial channel a, final channel /3,
Kao C S*C^ x 5*C^ is defined as the composite relation of 7^,4. and T^.1.:

^ = {(C.O e S^ x s-C,: ̂  e E(A), (c,0 e TZ^, (c',0 e TZ^_}. (2.36)
Note that «, ̂ ) 6 ̂ ^ thus means that there exists a generalized broken bichar-

acteristic 7 : R -^ E(A) and to € R such that 7|(-oo,<o] is S^611 by 7a,-(C). and
^ € 7([<o, +00)). Thus, 7^4- should be thought of as the relation induced by $_ -at
channel a5 as time goes to —oo.

If 7Z C A x B is a relation, K C A, by 7Z(JQ we mean {^ € B : BC € K, (C, 0 G
7Z}. Similarly, if U C B, by n-\U} we mean {< € A : 3^ € U, (C,0 6 7Z}. We
call TZ(K) the image of K under 7Z. Thus, if K C 5*C^,

TZ^(^) = {^ e S(A) : 3C e ̂  $-({^}) n7o-(C) + 0},
and if [7 C S(A), then

7Z^(£/) = {C e 5*C,: ̂  e l/, ^-({^}) n7a-(C) 7^ 0}.
This definition, (2.32) and Theorem 4 immediately prove the following proposi-

tion.

Proposition 6. Suppose that H is a many-body Hamiltonian, A ^ A, and (2.33)
holds. Suppose also that g e C^{C^). Then

WFsc{Pa^(\)g) \ R^(\) C ̂ {R-(\)). (2.37)
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In addition, PQ+(A) extends by continuity from C^^C'o) to distributions g 6
C^(C,) wzth (WF(p) x R^X)) n U^ = 0 (i.e. 7Z^(WF(^)) n ̂ (A) = 0;. J/^
%5 <s^c/i a distribution, then

WF^(P^(A)p) C ^(J?-(A)) U7Z^(WF(9)). (2.38)

One of the main features of (2.37) is that in general WFsc(-Pa,-h(A)^) cannot be
expected to be contained in the radial sets; one also has to include the image of
the outgoing radial set under forward propagation in the statement. As a corollary,
(2.31) shows that in general S^a W does not map smooth incoming data to smooth
outgoing data. However, if /? is a two-cluster channel, every generalized broken
bicharacteristic 7 such that for some to € R, ^\(-oo^o] ls given by 7^+(C), ^ e S*C^
is actually equal to 7^ (C) for all times, and, b being a 2-cluster, 7^4. (C) never
intersects the radial sets, and as t —^ ±00, 7^+(C)(^) goes to R^(X). Thus, if 3 is a
2-cluster, a is any cluster, S^aW maps smooth functions to smooth functions. On
the other hand, if /3 is the free channel 0, then the absence of positive thresholds
gives a similar conclusion.

Corollary 7. Suppose that H is a many-body Hamiltonian, \ ̂  A, and (2.33) holds.
Suppose g € C^°(C^. Then WF(5^(A)ff) C n^_{R-(X)). Thus, if /? is the free
channel or it is a two-cluster channel, then Sf3a(X)g is C°°.

Our theorem on the wave front relation of the S-matrix is then the following.

Theorem 8. Suppose that H is a many-body Hamiltonian, X ^ A, and (2.33) holds.
Then S^a extends by continuity from C^^C^) to distributions g € ^c"00^^) m^
7^4-(WF(g)) n R+W =0. If g is such a distribution, then

WF5c(5^(A)g) C 7Z^_(7?-(A)) U TZ^(WF^)). (2.39)

If AI == {0}, then maximally extended generalized broken bicharacteristics are
essentially the lift of generalized broken geodesies on S71"1 of length TT, so in this
case we recover the following result of [31].

Corollary 9. If no subsystem of H has bound states and X > 0, then the wave front
relation of Soo(X) is given by the broken geodesic relation on S11'1, broken at C, at
distance TT.

3. Scattering geometry and analysis.

Although we cannot present a discussion of the required pseudo-differential construc-
tions here, in this section we point out the main features of many-body scattering
from the viewpoint of the compactification approach we adopted, using only the
appropriate differential operator algebras.

First, we recall from [19] Melrose's definition of the Lie algebra of 'scattering
vector fields7 Vgc(^0, defined for every manifold with boundary X. Thus,

V^X)=xV^(X) (3.1)
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where H(A") is the set of smooth vector fields on X which are tangent to 9X. If
(x, 2 /1 , . . . , yn-i) are coordinates on X where re is a boundary defining function, then
locally a basis of Vsc(X) is given by

x29^ x9y^ j =1 , . . . ,n-l. (3.2)

Correspondingly, there is a vector bundle ̂ TX over X, called the scattering tangent
bundle of X, such that Vsc(X) is the set of all smooth sections of ^TX:

v^x)=coc(x•^TX). (3.3)
The dual bundle of ^TX (called the scattering cotangent bundle) is denoted by
^T^X. Thus, covectors v e ̂ T^X, p near 9X, can be written as

dx dy
I ; = T - ^ + / ^ — 3.4

X2 X ' /

Hence, we have local coordinates (:r,y,T,/^) on ^T^X near 9X. Finally, Diffsc(X)
is the algebra of differential operators generated by the vector fields in Vsc(A^);
Diff^(X) stands for scattering differential operators of order (at most) m.

An example is provided by the radial compactification of Euclidean space, X ==
S^.. We can use 'inverse' polar coordinates on R71 to induce local coordinates on S^
near 9S^ as above. Thus, we let x = r~1 = |w|~1 (for r ^ 1, say, smoothed out
near the origin), as in the introduction, write w = rz:'"1^, uj e S7'"1, |w| > 1, and let
y^ j == 1,... , n — 1, be local coordinates on S71"1. For example, one can take the yj
to be n - 1 of the Wk/\w\, k = 1 , . . . . n. Then x € C°°(S^) is a boundary defining
function of §^, and x and the yj give local coordinates near 9S^_ = S71"1.

To establish the relationship between the scattering structure and the Euclidean
scattering theory, we identify S .̂ with W via the radial compactification RC as in
(2.3). The constant coefficent vector fields 9^ on W1 lift under RC to give a basis
of ^TS^. Thus, P 6 Diff^(§^.) can be expressed as (ignoring the lifting in the
notation)

P= E aa9^ ^eC00^). (3.5)
\Q\<^m

As mentioned above, a^ € C°°(S^) is equivalent to requiring that RC* da is a classical
(i.e. one-step polyhomogeneous) symbol of order 0 on W1. This description also
shows that the positive Euclidean Laplacian, A, is an element of Diff^(S^). In
terms of the 'inverted5 polar coordinates on R71 we thus have that covectors <^ • dw
take the form (3.4) with

r=-u-i=-y•^r2+\^=\^. (3.6)

Here fi is the projection of<^ to the tangent space of the unit sphere S71"1 at y 6 S71"1,
and \IJL\ denotes the length of a covector on S71"1 with respect to the standard metric
h on the unit sphere. In the general geometric setting, a similar identification can
be made by first identifying X with S^. locally.
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We next recall from [33] that polyhomogeneous symbols on Xa, pulled back
to R71 by TT^ are smooth on the blown-up space [S^;Ca]. Recall that the (real)
blow-up process is simply an invariant way of introducing polar coordinates about
a submanifold. A full description appears in [18] and a more concise one in [19, Ap-
pendix A] and in [31]. In terms of the Euclidean variables, explicit local coordinates
near the interior of the front face ft of the blow-up [S .̂; Co], i.e. near the interior of
ff = (3[S^ Ca]'Ca are given by

x=\wa\-\ y,=^U=^-'^rn-l). Z, = (0,{j = 1 , . . . ,n - m). (3.7)
\wa\

Similarly, one can easily write down local coordinates near the corner ff n/5[S^.; Ca]*Co,
Co = S71"1, see [31, Section 2]. As a result of such calculations, we conclude that if
Va € %iOT, i.e. Va € XaCOC{Xa^ then WVa e ^([S^GJ), vanishing at the
free face, i.e. the lift, /3[S^; Ca]*Co, of Co = S71-1 (we dropped pull-back by RC~1 as
well as the blow-down map in the notation; we drop (Tr0)* presently as well).

Thus, for a Euclidean many-body Hamiltonian, H = A + ̂ ^ Va, la becomes a
smooth function on the compact resolved space [§^_;Ca]. Hence, to understand H^
we need to blow up all the Ca' The iterative construction was carried out in detail in
[31, Section 2]; we refer to the discussion given there for details. However, we remind
the reader that the Ca are blown up in the order of inclusion (opposite to the usual
order on the clusters). That is, one starts with the blow-up of 2-clusters (which are
disjoint); 3-clusters become disjoint upon this blow-up. One proceeds to blow-up the
3-clusters; 4-clusters become disjoint now. One proceeds this way, finally blowing
up the N — 1-clusters. (The blow-up of the A^-cluster is a diffeomorphism, hence can
be neglected.) We thus obtain a manifold with corners which is denoted by [S^C].

More generally, we can let X be a compact manifold with boundary (in place of
S^), and let

C={Ca: aeJ } (3.8)

be a finite set of closed embedded submanifolds of OX such that OX = Co € C
and for all a, b 6 I either Ca and Q, are disjoint, or they intersect cleanly and
Ca n Cb = Cc for some c € I . Then [X; C] can be defined via a series of blow-ups as
above.

The algebra of many-body differential operators is then defined as

Diffsc(X.C) = C°°([X;C]) ®c-(x) Diffsc(X). (3.9)

That is, similarly to (3.5), P € Diff^(S^,C) means that

P= ̂  a^ ^EC^^C}) (3.10)
\Ct\<_in

where we again ignored the pull-back by RC in the notation. The Euclidean many-
body Hamiltonian H is thus in DiffjjS^.C).

One of the main differences between Diffsc(A^, C) and Diffsc(A^) is that the former
is not commutative to 'top weight5. That is, while for P € Diff^(X), Q € Diff^(X),
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we have [P,Q] € rcDiff^-^Y), this is replaced by [P,Q] 6 pc, Diff^'-^Y.C)
for P e Diff^(X.C), Q € Diff^(X.C) with pc-o a defining function for the lift of
Co. Thus, a vanishing factor (such as x above) is only present at the lift of the free
face Go, i.e. there is no gain of a weight factor at the front faces ft.

Now consider the operator H = A + V, V 6 C°°{[X',C}) vanishing at the free
face (the lift of Co), discussed above. As indicated in the previous paragraph, for
PeDiff^(X),

[A,P] € xDi^W C .cDiff^X.C). (3.11)

On the other hand,

^Plep^Dif^-^X.C). (3.12)

Hence, as expected, [V, P] is lower order than [A, P] at the lift of Co, but at ft it can
actually be higher order. That is, the term [I7, P] can dominate [A, P] there! This
would clearly cause very serious problems for positive commutator arguments used,
for example, to prove results on the propagation of singularities.

We can avoid this by choosing P carefully. Thus, in our Euclidean setting, we
take P e Diffsc(S^) as in (3.5), so a^ € C00^), and such that da\Ca = ° unless
only derivatives with respect to the external variables, -D(wap appear in D0'. That is,
writing the full symbol of P as a polynomial on ^T^S^, namely p = ̂ |Q|<^ ^a^0, we
require that p is Tr-invariant, i.e. p\sc^ §n is independent of ̂ a. This makes [I7, P] the
same order as [A, P] with additional vanishing at the lift of Co which will be sufficient
for the commutator arguments. Indeed, the standard Poisson bracket formula lets us
compute [H, P] to 'top weight' at the lift of Co, and then a compactness argument,
based on those of Froese and Herbst [5], described in the introduction, allows us to
obtain a positivity estimate at all boundary faces of [S^.;C] (or [X;C] in general). It
is the TT-invariance of p (and the corresponding statement in the pseudo-differential
setting) that allows microlocalization only in the compressed bundle, ^T^S^, not in
sc^T^cm

To prove the propagation estimates, we need to microlocalize such arguments,
i.e. employ the many-body pseudo-differential calculus developped in [31]. Rather
than developing this in detail here, we just mention that our positive commutator
estimates rely on operators that are essentially quantizations of Tr-invariant functions
on ^T^S^., much as outlined above for differential operators. Such operators would
be in Melrose's scattering calculus, were it not for the non-symbolic behavior as
^ —^ oo that the Tr-invariance imposes on non-polynomial functions. To eliminate
the inconvenient behavior as ^ —)- oo we compose the operator with ^{H}, ^ e
C^CR) supported near A; the result is indeed an operator A in the many-body
pseudo-differential calculus. The positive commutator proofs will then rely on the
construction of Tr-invariant functions on ^T^S^: with positive derivative along the
Hamilton vector fields ^H^ in the relevant part of phase space (cf. Definition 1),
and then proving that ^[^o(H)A'lAflpo(H),H} is positive modulo lower order terms
in the appropriate part of phase space for % of sufficiently small support near A.
This part of the proof is analogous to that of Froese and Herbst [5] as outlined in the
introduction; it is an inductive argument showing that the various indicial operators
of the commutator are positive (without compact errors!).
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