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Journees Equations aux derivees partielles
Saint-Jean-de-Monts, 31 mai-4 juin 1999
GDR 1151 (CNRS)

From pseudodifferential analysis
to modular form theory

Andre Unterberger
Abstract

Taking advantage of methods originating with quantization theory, we try
to get some better hold — if not an actual construction — of Maass (non-
holomorphic) cusp-forms. We work backwards, from the rather simple results
to the mostly devious road used to prove them.

1. Introduction.

We first freshen up the reader's memory on the subject of non-holomorphic modular
forms. With G = 5L(2,R), the Poincare upper half-plane can be considered as the
homogeneous space II = G / K , K = 50(2), if G is to act on 11 by the usual formula

The hyperbolic Laplacian

2 / 92 92 \
f UT2 + ̂  (1-2)\dx2 ay2) v /A=-y

is a G-invariant differential operator on II. With F = 5'L(2,Z), one then defines
non-holomorphic modular forms {e.g. [1] or [4]) as those r-invariant functions on
II which are eigenfunctions of A, bounded by some power of y = Im z in the
fundamental domain

F = { z e T l : - 2 < ^ < 2 ; M >!}• (1.3)

Explicit examples of such are constants, and (non-holomorphic) Eisenstein series
rr< -i^r1- - -i - _Ei-^ defined as

2

1 v^ f\mz-n\2\t~^

E^-. S (-^-)' (U)
|m|-h|n|^0

(n,m)=l
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when Re v < —1, then by complex continuation as a meromorphic function of v
in the entire complex plane. The function E\-v satisfies the equation \E\^_ =

2 2
\-V2 r—r~^l^'-V .

2~

The examples that precede correspond to the isolated eigenvalue 0 and (for v
pure imaginary) to the continuous part of the spectrum of some appropriate exten-
sion of A as an operator on L^F^), the space of functions on n which are F-
invariant, and square-integrable with respect to the invariant measure dp,{z) = d£^
once restricted to F. The automorphic Laplacian also has a discrete spectrum. Here
is an easy proof that we do not yet have a full set of (generalized or not) eigenfunc-
tions: take the /Poisson bracket of two distinct Eisenstein series and observe that
it is, in some obvious sense, an odd function under the symmetry z »-> —z, while
constants and Eisenstein series are even functions under the same symmetry. The
Selberg trace formula yields considerably more precise results, to the effect that
there are infinitely many linearly independent genuine eigenfunctions of A lying
in L^I^n) (such functions are hereafter referred to as cusp-forms, or Maass cusp-
forms); moreover, there is an N(\) equivalent, a simple constant times A.

Still, the nature of the eigenvalues of the automorphic Laplacian, and that of its
eigenfunctions, is essentially a mystery. There are some elements of answer, based
on the consideration of certain complicated Dirichlet series (cf. the theory ofKloost-
erman sums), the poles and residues of which correspond to the eigenvalues of A
and to the Fourier coefficients (c/. infra) of associated cusp-forms. Our present
results go in the same direction: however, some of our Dirichlet series have rather
simple coefficients, and residues of appropriate generalizations of Eisenstein series
yield at once the Maass cusp-forms, without any need for resumming Fourier series.
Moreover, our methods are unrelated to the two ones practised by all authors after
Selberg: the one based on the consideration of the so-called Poincare series, and
that based on the use of the integral kernel of the resolvant. Rather, they rely on
facts of structure inspired by pseudodifferential analysis, even though, at the end,
it would be possible to dispense with the latter one.

Before we leave this introduction, let us point out that the separation of vari-
ables method makes it possible to write any non-holomorphic modular form /,
corresponding to the eigenvalue 1-^—, as a Fourier series (with respect to x)

f(z) = ao y^ + a,i y^ + r ̂  bn K^ Wn\y} e21^ . (1.5)
n^O

For instance, for the function f{z) == C*(l — ^) Ei_^{z), with

C*(,): :=7r-tr(J)C(^ (1.6)

the expansion above holds with OQ == (^*(1 — ^), a\ = (^*(1 + ^), and bn =
2 H~i <J^(n), where (Jv(n) denotes the sum of z^-th powers of all positive divisors
of n.
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2. A first example.

Theorem 2.1 Given n e Z^ ,se^ /or ewn/ m > 1,

a,(m): =^e2^.

rmodm

r(l-r)=0

(2.1)

r/12'5 can also be written as

k
an^^^l+e2^) (2.2)

j=i

where, if m = p^1 ... p^ ^5 ^/le decomposition of m as a product of prime factors,
X j is for each j = 1 , . . . , k the solution (mod m) of the Chinese remainder problem
X j = 1 mod p^3, X j = 0 mod p^ for t ̂  j . Consider, for Re s > 1, the Dirichlet
serzes

^n(s)=^an(m)m~s. (2.3)^n^) — / ^ UJn\
m>l

It extends as a meromorphic function to the half-plane Re s > 0, s ̂  1. The points
which are poles of at least one of the functions ^ are all the points ^ a} a non-

trivial zero of the zeta-function, and some points Sk == l -2Afe, 5^(1 — s^) = —JL in
the discrete spectrum of the automorphic Laplacian.

Which points Sk exactly? We answer this question, in terms which depend on
the concept of L-function, in the next section.

3. Hecke^s theory.

As all PDE practitioners know, one should never study a linear operator A
without considering at the same time all operators that commute with A (fully or
principally only), which one can put one's hands on. We have already seen, in the
introduction, that it is useful, in our case, to consider the operator f ̂  f with
f(^z) == f[—z)'. this permits to distinguish even eigenvalues from odd ones. On
the other hand, A commutes with all Hecke operators 7^, N ^ 1. These are not
differential operators, but operators of an arithmetic nature:

(7W)(z)=A.4 ^ f(az^). (3.1)
ad = N, d > 0

b mode?

The operators from the system {-\, {Tff}ff^} are self-adjoint and commute with
one another. It is thus possible, for each even eigenvalue ——s- of A, to find a
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(finite) basis {M.k,f}i of Hecke-Maass forms, joint eigenfunctions of the whole sys-
tem, making up an orthonormal set. One can adjust the first Fourier coefficient b\
in the expansion (1.5) of each Mk,£ to a positive real value, which will be part of
our assumptions. Sometimes, it is better to substitute for A4k,£ the function A4.^
proportional to the former one, normalized by the condition b\ = 1.

With any cusp-form Ad, one associates its L-function L(.,.M) defined as the
Dirichlet series

L(s^M)=Y^bnn-^ (3.2)
n>l

the coefficients of which have been borrowed from the Fourier expansion (1.5) with
/ = M. It is only absolutely convergent when Re s is rather large (just how large
depends on unproven conjectures), but a very easy holomorphic continuation to the
whole complex plane is possible: it is useful to contribute some extra F-factors,
substituting

r(., M): = 7T-5 r(J + ̂ ) r(| - ̂ ) L{s, M) (3.3)

for L(s,M) if M. is associated with the eigenvalue above, so as to get a simple
functional equation.

14-A2

Theorem 2.1 can then be made fully precise as follows: the eigenvalues ——s-
which occur as poles of at least one of the ^'s are those for which L ( - A ^ ) 7^ 0
for at least one even cusp-form A4 with such an eigenvalue.

It is easy (we shall not do it, from lack of space, but the next section will give the
idea) to generalize theorem 2.1 so that the presence of any given eigenvalue should
depend on the value of L-functions at generic points, rather than ^. In this way,
we can get all even eigenvalues of A. Also, a modification makes it possible to get
the odd eigenvalues as well: in the latter case, the zeros of the zeta-function do not
enter the family of poles of the appropriate Dirichlet series.

4. A generating series of sorts for Maass cusp-forms.

Assuming |Re v\ < 1, set

r / \ 1 V^ (m^\tL\ \1-Z1E (\mz-n\2\ 2

^.-(^a E y'l"! ' (^n—J • (4-1'
7^ez,mezx

m|n(n—l)

where the pair mi, m^ is the pair of positive integers characterized by the conditions
\m\ = mim2, m i | n — l , m^\n.
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One can show that the preceding series converges when Im ^ > 1 + [Re v\ but
that, except for the poles ^ = z'(l ± ^), the function

/x ̂  F^(z) - F^(-)
^

extends as a holomorphic function to the larger half-plane Im ^ > —1 + |Re v\. Now,
as a function of ^, F^^(z) is not modular, but it satisfies the equation AF^ =
1±^- F^y and it is already Z-periodic. Thus, if one can prove (one can) that, as a
function of /2, it extends as a meromorphic function to the larger half-plane above,
it is clear that the coefficients of its polar parts at poles contained in this half-plane
will have to be modular forms!

Theorem 4.1 Assume |Re v\ < 1. The function 11 ̂  F^^(z) extends as a holo-
morphic function for Im [i > —l+|Re z/[, p. -^ i(l ± v\ except for the following
poles: the points —iuj with C*^) == 0 contained in this half-plane, and the points
^k^ "T^ i^ the even part of the discrete spectrum of A. Near a point —iujy the
function

v(^ill.\ /'(l~i^~y\ ^( i-^->-^\

^^.^—r^-^d^)—^^ ^
remains holomorphic. A point X^ can only be a simple pole, and the residue there
of the function under discussion is

pf—^} TV-idl̂ t̂
-^-•'"- ^———M^), (4.3)

where

4+^M^ =Y^L{———^M^)M^. (4.4)

Thus all even Maass cusp-forms can be obtained as residues of rather simple
Eisenstein-like series; again, there are corresponding results in the odd case. It
takes considerable work to prove this theorem (or theorem 2.1 as well): one of the
main points is an expansion of the product (one would take a Poisson bracket instead
in the odd case) of any two Eisenstein series.

5. Products of Eisenstein series.

Theorem 5.1 Let v\ et v^ be complex numbers with Re (^±^2) ¥" ̂ l anc^ ^ii ^2 ¥"
— 1 , 0 , 1 , finally v\±.v^^ 0. Let

E = {(^i = ±1, ^2 = ±1): ^1 Re ^i + ^2 Re ^2 < 1} . (5.1)
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Then

C*(l-^l)C(l-^)^i(2)^z(z)=
2 2

^ C(l-^i)C(l-^2)^i_£in±^(z)
(ei,£2)€E

+E^iJl^ll-2Au^)<:,<
i y00

+— / $(^i,^;A)£;i^(z)dA, (5.2)
0'^ J-00 2

wz'fA

/•M - 1 /-*fl_l^i__^ A/- t ^/l+^^i-^ .,. . /, _,•/^2 - 2 ^——2——,Mk,e)L (——^——,A/fc,<) (5.3)

one?

^(^1,^2; A) ==
^*^l+t'.\-t/l+IA)\ /-*/-H-tA+l/l-^2\ /-*/'l-tA-t/l-I/2\ .>*/l+lA-t/l-l/2\

C*(-^) (5.4)

The proof of theorem 5.1 is very technical. It is based on the use of the Radon
transform and on a non-trivial extension of the so-called Rankin-Selberg unfolding
method: this is a trick for recovering the coefficient <3> of the continuous part from
the Roelcke-Selberg expansion — i.e., the spectral decomposition — of a reasonably
general function in ^(I^n). Hyperfunctions are made use of in our version, since
the problems of complex continuation which arise here demand that one should add
holomorphic functions with disjoint domains!

Also, it is necessary for the application to theorems 2.1 and 4.1 to make a detailed
study (which follows from a somewhat deeper examination, under the scrutiny of
Hecke's theory, of the discrete terms in the expansion above) of the complex contin-
uation of the Dirichlet series in two variables

U^t)= Y^ Imil-^l-^22^, {m^ EE 1 mod mi). (5.5)
771177127^0

(TTll,7712 )=1

6. The Radon transform^ pseudodifferential analysis and
modular forms.

It is possible, as we found out while preparing this lerture, to describe the Radon
transform which has just been alluded to (in fact, a slightly more interesting object!),
usually a topic in Harmonic Analysis, in terms more suitable to a PDE environment:
namely, as a link between the space of Cauchy data associated to the Lax-Phillips
scattering theory for the automorphic wave equation on one hand, and a concept of
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automorphic Weyl symbols on the other hand.

Our first theorem works in a non-arithmetic setting: the hyperbolic Laplacian,
as well as the square-root of A — ^ is considered on the half-plane, not in the
fundamental domain. The three-dimensional domain C is the forward light-cone

C = {r): r)o > 0, 7?o2 - ̂  - 77J > 0} , (6.1)

identified as in (6.4) below with the set of positive-definite 2 x 2-matrices and, if h
is an even function on R2 (a distribution would be fine too), Qh is the function on
C defined by

^1^2) = (W^^^X ̂ y^, 66). (6.2)

The operator D is the standard wave operator

n=-92---92---52
D ~ ~^ft ~ ̂ 2 - a~2 • (6-3)- 9^ Qrfi 9^

Theorem 6.1 Recall from [3j,p.ll, that under the map

(^^(^o^J^ff?) (6-4)
\ v y /

from Rx n to C and under the gauge transformation u ̂  W = e~^u, the equation
QW = 0 inside C is equivalent to the wave equation

^+(A-|)^=0, (6.5)

in which A denotes the hyperbolic Laplacian on II.

Consider on one hand the (classical) Cauchy problem

r§l+(A-^=o
^(0,2)=/o(^ (6.6)
[^{0,z}=f,{z),

on the other hand the characteristic problem

W=0 in
DW = Qh. d2LA21 (6.7)

'no

in which W denotes the function W extended by 0 in R^C, and Qh is the function
on 9C associated by (6.2) to some even function h on R2: the right-hand side of
(6.7) is the measure supported by 9C with density Qh with respect to the (Lorentz-
invariant) canonical one.
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Using appropriate Hilbert spaces of data, as indicated by the formula

ll̂ ven^) = 2^2 ll(A-^/o||i.(n)+||/illi.(n)] , (6.8)

one can set up a one-to-one correspondence between the two problems.

Moreover, through the map (fo, /i) ̂  h so defined, the operator (_ ° ^ ^
\ ' " " ^ Z 7

the study of which plays the major part in [3] is taken to the Euler operator i^S •=^^+^+l)on^•
We now move to an arithmetic {i.e., F-invariant) environment. For the space

^(II) we substitute of course Z/^F^), substituting at the same time |A - ^ j s
for (A - ^)s to allow for the isolated eigenvalue corresponding to constant eigen-
functions. However, much more care is called for when one wishes to define a space
^Jven(r'\R2) in a natural way.

For, now, G = SL(2,R) acts on R2 in a linear way, and there is no fundamental
domain for the action of F (the orbit of any (^i,^>) with |̂  Q is dense in E2).
Thus, there are no non-constant reasonable F-invariant functions on R2. However,
there is a natural concept of F-invariant, or automorphic for short, distribution: the
Dirac comb on R2, or the Dirac distribution at the origin, are the obvious exam-
ples. To define a useful Hilbert space of even tempered automorphic distributions
is another matter, which can be dealt with in different, but equivalent, ways. The
simplest one is based on the use of the following two families of coherent states in
£2(R):

.,. ,1 /- 1\14 i7Tt2U z { t ) = 2 * Im-: exp——,
\ z ) z

i / ,^ ^,5 i / 1 \ ^ i-n-t2
u,(t) = 24 7T2 Im -: texp——, (6.9)

\ z ) z v /

parametrized by z e H: using the metaplectic representation, observe that they
constitute total spaces in the two subspaces of ^(R) consisting of even {resp. odd)
functions. If 6 is an even tempered automorphic distribution, and Op(6) is the
operator with Weyl symbol 6, then the functions (uj0p(6)^) and (^|0p(6)n^)
are F-invariant as functions of 2, and the Hilbert space Lj^n(F\R2) can be defined
as the one associated with the norm such that

ll^l^.enW): = | II z ̂  (^|0p(6)u,) ll^ryi)

+ ^ || |A - ̂ |-i (z ̂  (^|0p(6)^)) Hi^n). (6.10)

In the F-invariant case, theorem 6.1 extends as follows.

Theorem 6.2 The map {fo, /i) ^ h defined in theorem 6.1 extends to the F-
•invariant case. If one decomposes it as (/o, /i) •->• © '-)• h, with h = 25 TT"'^ F^TT*?) 6,
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i. e. (using for distributions the same notation as for functions)

/ i (Q=2^ FG^^e-^t-^dt. ^ G R 2 , (6.11)
Jo

one then has

\ H6Hi?.en(W = 1 1 ̂  - ̂  /o||i.(r\n) + ll/ill^(r\n), (6.12)

where the right-hand side is just the square of the norm introduced by Lax and Phillips
on the space of Cauchy data,

7. The composition of Weyl symbols.

Besides substituting for the matrix-operator ( . i n ) t^6 slmP^e first-order
v ^ • i u/

operator ZTT <f, theorem 6.2 has another advantage. It endows the Lax-Phillips space
of Cauchy data with the algebraic structure transferred from the Weyl composition
of symbols. It is of course interesting to make this transfer explicit. This calls for a
preliminary study of how the composition # of (even, for simplicity) Weyl symbols
behaves under the decomposition of symbols into homogeneous terms.

Using a Fourier transformation, set for any such symbol h = f°° h\ c?A, where
the function h\ is homogeneous of degree —1 — iX: this latter function can be
recovered from the function h\ on the real line, defined as h\{s} = h\{s^ 1). Then
there should exist an integral kernel K\^^\(s\,s^ s), depending on the three real
parameters indicated, that should, under reasonable conditions (say, when dealing
with Hilbert-Schmidt operators) make the formula

/*00 /*00/ oo /*oo

{hvW\{s)= / dAirfAs
-00 J—00

t K^.^s^s) (h^{s,)(h^(s^ds,ds^ (7.1)
JR2

valid in some weak sense. Indeed, one finds that it works with
3 i(-A-(-Ai-t-A9)-2

K^^x(s^s2^)=2-2(27^) 2 x
1 ^ l+z(A4-Ai-A2)4-2j ^T^ l-H'(A-Ai-hA2)+2.7 ^T-V l+z(-A-Ai-A2)+2j ^

E .3 [ ^ ) [ ^ ———— / v ^ ——— )

p/ l+z(-A-Ai4-A2)4-2j \p/ l+z(-A4-Ai-A2)+2j \p/ l4-z(A+Ai+A2)+2J\
j=0 L \ 4 / i V 4 y 1 ^ 4 /

x X^zA^i^s) (7.2)

if we set

X^2;,/(S1,S2;S) =

\s^ - sal^-^+^^^lsi - s)^-1-'^1-1^)^ - s^-1-"-^^

x sign (——I-8———) (7.3)\ (s-s i ) (s2-s)y • ,
XV-9
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and X^2;^(5^ s^ 5) ls ̂ st ̂ e same function with the sign on the right-hand side
removed.

What this formula says is that the composition of Weyl symbols can be essen-
tially reduced to the study of the two bilinear operations — involving functions of
one variable only — associated with the integral kernels ^^.^{s^s^s}, j = 0
or 1; actually, one term corresponds to the commutator and the other one to the
anticommutator of the two operators involved.

Finally, as another lengthy computation shows, transferring the bilinear opera-
tions just referred to to an operation on Lax-Phillips Cauchy data reduces to com-
puting the spectral decomposition of the product or Poisson bracket of any two
eigenfunctions of A: this explains our interest in these matters, especially in the
r-invariant case.

8. Conclusion.

Our interest in the Roelcke-Selberg expansion of products (c/. theorem 5.1) or
Poisson brackets of Eisenstein series might have originated from our desire to make
the composition of automorphic Weyl symbols in R2 fully explicit. Actually, it
stemmed from a similar, not identical, question, connected to another species of
symbolic calculus. In any case, the Radon transform — in one version or another —
led to an extension of the Rankin-Selberg unfolding method or, more generally, to a
new way to recover the coefficients of the spectral decompositions of arbitrary func-
tions in L2(^\]l). Theorem 5.1 and related ones brought benefits in the direction of
some new information about Maass cusp forms: these were not unexpected in view
of earlier work done in the holomorphic case [5], in connection with the so-called
Rankin-Cohen products [2]. Finally, it has become clear to us that considering
automorphic distributions on R2 as Weyl symbols brings together a considerable
amount of structure: we hope that the applications of this point of view are far
from exhausted.
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