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Journees Equations aux derivees partielles
Saint-Jean-de-Monts, 31 mai-4 juin 1999
GDR 1151 (CNRS)

On the Z^-mstability and ^-controllability of
steady flows of an idealincompressible fluid

Alexander Shnirelman

Abstract

In the existing stability theory of steady flows of an ideal incompressible
fluid, formulated by V. Arnold, the stability is understood as a stability with
respect to perturbations with small in L2 vorticity. Nothing has been known
about the stability under perturbation with small energy, without any restric-
tions on vorticity; it was clear that existing methods do not work for this (the
most physically reasonable) class of perturbations. We prove that in fact,
every nontrivial steady flow is unstable in Z/2; moreover, every flow may be
transformed into any other one, with the same energy and momentum, with
the help of an appropriately chosen perturbation with arbitrary small energy.
This phenomenon reminds the ArnokTs diffusion. This result is proven by the
direct construction of a growing perturbation, which is done by a variational
method.

1. In this work we are studying the flows of an ideal incompressible fluid in a
bounded 2-d domain M C R2, described by the Euler equations

Qu
.- + (u. V)n + Vp = 0;

V ' ^ = 0.
(1)

(2)

Here u = u(x,t), x 6 M, t 6 [0,T], and U\QM is tangent to 9M.
It has been known for a long time, that if the initial velocity field u(x, 0) is

smooth, then there exists unique smooth solution u(x^ t) of the Euler equations,
which is defined for all t E R; see [M-P]. The next natural question is, what may be
the behavior of this solution, as t —> oo. This is a problem of indefinite complexity.
A restricted problem is the following: suppose that the initial flow field UQ (x) is in
close to a steady solution Uo(x). What may happen with this flow for big t7 Does
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it stay always close to UQ, or it can escape far away? Which flows are available, if
we start from different initial velocities, close to UQ?

These are problems of a global, nonlinear perturbation theory of steady solutions
of the Euler equations. The first idea is to develop a linear stability theory. The
spectrum of a linearized operator is always symmetric w.r.t. both the real and the
imaginary axes, for the system is Hamiltonian. Therefore we can never prove an
asymptotic stability by the linear method; at best we can prove the absence of a
linear instability, which, in its turn, may be a tricky business.

The true, nonlinear stability of some classes of steady flows was first proven by V.
Arnold (see [Al, A2, A-K]). He considered a very strong restriction on perturbation:
the perturbation of the vorticity, C( ; (0 )—a;o==Vxn( - ,0 )—Vxno( ' )7 should be small in
L2(M). There are three classes of steady flows which are stable under perturbations
small in this sense. The first class contains only one flow with constant vorticity;
its stability is obvious. The second and the third classes consist of steady flows,
corresponding to a strong local maximum, resp. minimum, of the kinetic energy
on the leaf of equivortical fields in the space of all smooth velocity fields in M (see
[A-K]).

But this theory breaks down, if we drop the condition on the vorticity pertur-
bation, and consider all (smooth) velocity fields n(^,0), which are close to Uo(x) in
L2, without any conditions on the derivatives. Note that this class of perturbations
is no less physically significant than the previous one, because it describes pertur-
bations with small energy. In this case, there is apparently no obstacle preventing
the flow from going far away from UQ. So, it is likely that the flow is unstable, (but
this does not prove instability, for there may be some other reasons for stability,
like, for example in the KAM theory. This is analogous to the situation in the 3-d
Euler equations. In the 2-d case, the vorticity is transported by the flow; this means
that there exist infinity of integrals of motion, namely the moments of vorticity.
These integrals prevent the solution from forming singularities. In the 3-d case, the
vorticity field is transformed by the flow as a frozen-in vector field, and we can't
extract additional integrals of motion from the vorticity field. This means that we
don't know any obstacle to the formation of a finite-time singularity from a smooth
initial flow. But we have no examples yet of such singularities. May be, this work
may give some hints.)

2. In this work we consider a weaker stability problem. Consider the Euler
equations with a nonzero right hand side (i.e. external force):

r)ii
^-+(^,V)^+Vp=/; (3)

V • u = 0. (4)

Here / == /(re, t) is a smooth in x vector field, such that V • / = 0, and /(^, t}\QM
is parallel to 9M. Consider the behavior of u(x^ t), if / is small in the following sense:
S^ I I /('^) Ik2 ^t ls sma^ where [0,T] is the time interval (assumed to be long),
where the flow is considered. For example, if / has the form f{x^t) == F(x)6(t). we
return to the initial stability problem.
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Definition 1 Suppose that u(x^,x^) and v(x^,x^) are two steady Sows. He say
that the force f transfers the Bow u into the Sow v during the time interval [0, T], if
the following is true: ifw(x, t) is the solution of the nonhomogeneous Euler equations
(3), (4) with the initial condition w(x,0) = u(x), then w(x,T) = v(x).

Consider the simplest basic steady flow, namely a parallel flow. Let M be a strip
0 < x^ < 1 in the (rri.a^-plane. We restrict ourselves to the flows having period
L along the ^-axis; this period is the same for all flows that are considered below.
Suppose that the velocity field uo(x) has the form (U(x^), 0), where U is a given
smooth function (the velocity profile). The original problem was, for which profiles
U the flow UQ is stable. Our main result is the following

Theorem 1 For every nontrivial (i. e. different from constant) velocity profile U
the flow UQ is L^-unstable. This means that for every function U(x^) ̂  const there
exists C > 0, such that for every e > 0 the following is true. There exist T > 0 and
a smooth force f(x^ t), defined in M x [0, T], such that f^ || /(-, t) ||^2 dt < e, and f
transfers the flow UQ during the time interval [0,T] into a steady flow u\, such that
II UQ - HI ||jr/2> C.

So, the flow may be considerably changed by arbitrarily small force, provided
the time interval is sufficiently long.

Note that if the force / satisfies a stronger condition ^ \\ o;(-,<) ||^2 dt < e,
where uj = V x / is the vorticity, then, for every Arnold stable flow UQ^ the resulting
perturbation at time t will be small, too.

This theorem is implied by a much stronger assertion.

Theorem 2 Suppose that U(x^) and V{x^) are two velocity profiles, such that
Jo1 U{x^)dx2 == Jo1 V{x^)dx^, and ^ ̂ (x^dx^ = Jo1 ^V^x^dx^; let UQ^X^X^ ==
(?7(:r2),0), vo(xi^x^) = (V(x^)^O) be corresponding steady parallel flows (having
equal momenta and energies). Then for every e > 0 there exist T > 0 and a smooth
force f{x^t), such that f^ || f('^t) \\L2< ^7 ^d f transfers u into v during the time
interval [0, T].

This means that the flow of an ideal incompressible fluid is perfectly controllable
by arbitrarily small force.

3. Theorems 1, 2 are proven by an explicit construction of the flow.
Note first, that if [/i, U^^ • • • , UM are velocity profiles, and Theorem 2 is true for

every pair ([/^,[7^i) of velocity profiles, then we can pass from V\ to U^, simply
concatenating the flows connecting Ui and L^+i; thus Theorem 2 is true for the
pair (D\,UN)- Therefore it is enough to construct the sequence of steady flows
with profiles [/i, • • • , [/^v, and the intermediate nonsteady flows connecting every
two successive steady ones.

Note also, that it is enough to construct a sequence of piecewise-smooth flows, for
it is not difficult to smoothen them, so that the necessary force will have arbitrarily
small norm in ^(O.TiL^M)).
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As a first step, we change the flow with the profile U = U\ by a piecewise-
constant profile U^ with sufficiently small steps; this may be done by a force with
arbitrarily small norm.

Thus, U^x^) is a step function, ^2(^2) = U^ for xf'^ < x^ < x^\ k =
1, • • • , K. Every next profile Ui is also a step-wise function. We are free to subdivide
the steps and change a little the values of velocity, if these changes are small enough.

Every flow Uk is obtained by the previous one Uk-i by one of two operations,
described in the following theorems.

Theorem 3 Let U(x^ be a step function, U(x^) = U^ for x^'^ < x^ < x^; let
V(x^) be another step function, obtained by transposition of two adjacent segments
[x\ ~ \x\/] and [x^ \x\ + )]. Let ^(^1,^2)5 v{x\^x^) be parallel flows with velocity
profile U(x^)^ V{x^). Then for every e > 0 there exist T > 0 and a piecewise- smooth
force f(x^t}, such that Jo || /('^) \\L2< e7 an(^ the force f transfers the flow u into
the flow v during the time interval [0,T].

To formulate the next theorem, remind the law of an elastic collision of two
bodies. Suppose that two point masses m\ and 7722, having velocities u\ and u^
collide elastically. Then their velocities after collision will be v\ = 2uo — u\, v^ =
2uQ — ^2, where UQ = (m^Ui + m^u^)l(m\ + m^) is the velocity of the center of
masses. The transformation (^1,^2) —> (^15^2) is called a transformation of elastic
collision.

Theorem 4 Suppose that the profile U{x^) is like in Theorem 3, and the profile
V(x^) is equal to U(x^) outside the segment x\ ~ < x^ < x^ ; on the last segment,
V(x^) = vW, ifx^ < x^ < x^\ and V{x^) = v^\ if x^) < x^ < x^\
where {v^\ v^^) is obtained from (u^\u^1^ by the transformation of elastic
collision, the lengths x^ — x^~ /, x^' — x^ playing the role of masses mi, mi.
Let u{x\^x^)^v{x\^x^) be parallel flows with profiles U{x^},V{x^). Then for every
e > 0 there exist T > 0 and a force f(x,t), such that f^ |[ f(',t) \\L2< ^, ^d the
force f transfers the flow u into flow v.

Suppose now, that U{x^) and V{x^) are two velocity profiles, having equal mo-
menta and energies. Then it is not difficult to construct a sequence of step functions
^2(^2)7^3(^2)7 • • • 7^(^2)5 so that [/2 is Z^-close to £/i == U, UN is Z^-close to
V, and every profile Uk is obtained from Uk-i by one of two operations, described
in Theorems 3 and 4. Using these theorems and the notes above, we construct a
piecewise-smooth force /(rc.t), such that ^ \\ f ( ' , t ) \\^ dt < e, and / transfers U
into V during the time interval [O.T].

4. Theorems 3 and 4 are proven by the variational method.
Let P(.M) == V be the group of the volume-preserving diffeomorphisms of the

flow domain M. These diffeomorphisms may be identified with fluid configurations:
every configuration is obtained from some fixed one by a permutation of fluid parti-
cles, which is assumed to be a smooth, volume preserving diffeomorphism. The flow
is a family gi of elements of D, depending on time t, 0 <, t < T. The Lagrangian
velocity of the flow is a vector-function V{x, t) == |^<(^) = 9t(^), while the Eulerian
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velocity is the vector field v(x,t) = gt(g^(x)). The action of the flow is defined as
J{9t}o = to 5 I I 9t Hlz dt, and the length L{^}^ = ff || ̂  ||̂  ^.

The solution u(x,t) of the homogeneous Euler equations (1), (2) is an Eulerian
velocity field of a geodesic trajectory ^ on the group Z>: u(x,t) = ̂ (^-l(a')), such
that 6J{gt}'o = 0, provided go, gr are fixed. This implies that also 8L{gt}^ = 0.
This is the classical Hamiltonian principle (see [A3]). The evident idea is to trv
to construct solutions of the Euler equations by fixing go, gr € V, and looking
for the shortest trajectory, connecting these fluid configurations. If the minimum is
attainable, then we have constructed some nontrivial solution of the Euler equations.

But this idea does not work well. If go and gr are C^-close, the minimum is
assumed at some smooth trajectory. But if go and py are far away from each other,
which is the only interesting case, then it is possible that the minimum is no more
attainable (see [S, A-K]). In the 3-d case there are examples of go,gr, such that
for every smooth flow ^, connecting go and ^r, there exists another smooth flow
g't, connecting the same fluid configurations, such that J{g[}^ < J{^}^; so, the
minimum is unattainable.

The existence of a minimal geodesic connecting two configurations of a 2-d fluid
is neither proven nor disproven, while some physical considerations show that some-
times the minimal smooth flow does not exist .

If there is no smooth solution of the variational problem, we may look for a
generalized solution, which is no longer a smooth flow, but belongs to a wider class
of object. The appropriate notion of a generalized flow was introduced by Y. Brenier
[B]. Generalized flow is a probability measure 11 in the space X = (7(0, T; M) of all
continuous trajectories in the flow domain M, satisfying the following two conditions:

1. For every t 6 [0, T] and every Borel set A C M,

p,{x(-)\x(t) e A} = mesA;
2.

fT
J{P} = I I ^Wdt^dx} < oo

J X «/0

The meaning of the first condition is that the generalized flow is incompressible;
the second condition expresses the finiteness of the mean action (and that ^-almost
all trajectories belong to H1}.

Every smooth flow may be regarded as a generalized one; but there is a lot of
truly generalized flows.

The generalized variational problem may be posed as follows: given a diffeo-
morphism g e P; consider all generalized flows which, in addition to the above
conditions, satisfy the following:

3. For /^-almost all trajectories x(t), x(T) == g(x(0)).

We are looking for a generalized flow, which satisfies all three conditions and
minimizes the functional J[p}^ = ̂  ff ̂ x^dt^dx}.

Y. Brenier has proved, using the simple ideas of weak compactness of a family
of measures and semicontinuity of the action functional in X, that this problem has
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a solution for every g € V. Simple examples show that this solution may be very
far from any smooth, or even measurable, flow.

But in the 2-d case the situation is much better, because there is an additional
structure. To see it, consider a smooth incompressible flow j^, 0 < t < T, go ==
Id, QT = g . Let Q = M x [0, T] be a cylinder in the {x, ̂ )-space. Every trajectory
^x = {(5t(:r)^)L ^ € A^, is a smooth curve in Q, connecting the points (;r,0) and
{g{x),T). For different points x,x1', the curves A.r, \^ do not intersect. So, the lines
\x form a braid, containing continuum of threads. Such a braid is called a smooth
braid.

Now let us define a generalized braid. Let us fix a volume-preserving dif-
feomorphism g € T> and a piecewise-smooth incompressible flow Gf, such that
Go = Id, GT = g - The bundle of lines (G^(a;),t), x G M, is called a reference
braid and denoted by Bo.

Definition 2 A generalized flow p, is called a generalized braid, and denoted by B,
if it satisfies conditions 1, 2, 3 above, and the following condition

4. For any N, let us pick trajectories ^(t), • • • ̂ x1^^) by random and indepen-
dently, i.e. with a probability distribution ^ ® • • • ® p. (N times). Then for almost
all such N-tuples of trajectories, the lines {x^t)^) for different i do not intersect,
and the finite braid, formed by the curves (rc1^),^), • • • , (x^^^t^t), is isotopic to the
braid, formed by the curves ((^(^(O)),^), • • • , ((9^(^(0)),^) (these braids have the
same endpoints, so it is possible to define their isotopy).

The braid B is called a braid weakly isotopic to a piecewise-smooth braid Bo.
We are discussing the following variatipnal problem: given a map g and a ref-

erence braid Bo; find a generalized braid B, isotopic to Bo, which minimizes the
functional J{B}.

Theorem 5 The variational problem has a solution for every data g, Bo.

To prove this theorem, we consider a sequence B^ of braids, such that J{B^}(^ \
Jo, where Jo = infJ{B} for all braids B, isotopic to a given braid Bo. This sequence
is weakly compact; its subsequence converges to a generalized flow /^, such that
J{^} = Jo, exactly as for the generalized flows. Bur the generslized flow ^ is,
in fact, a braid isotopic to Bo, which we shall denote by B. This is implied by
the fact that the isotopy class of a finite subbraid wit), fixed endpoints is "weakly
continuous", and therefore we can pass to the limit and conclude that the weak limit
of the braids B^, regarded as generalized flows, is a braid, isotopic to Bo. Let us
call B a minimal braid.

Generally, braids are as nonregular locally as generalized flows. In particular,
they have, in general, no definite velocity field: for almost every (x,t) there are
different trajectories passing through this point with different velocities. But the
minimal braid is much more regular. Recall that a measurable flow is defined as a
family hs,t of measurable maps of M into itself, preserving the Lebesgue measure,
and such that hs,t ° hr^s '=z hr,t for all r, 5, t 6 [0, T].
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Theorem 6 Let B be a minimal braid, isotopic to the reference braid Bo. Then
there exists a measurable flow h^ in M, such that for ^-almost all trajectories x(t),
x(t) = hs,tx{s). Moreover, there exists a vector field u (a-, t) € L2, divergence free
and tangent to 9M, such that for almost all trajectories x(t}, x(t) = u(x(t} t} for
i i »i * \ / 7 \ / \ \ / ? / J

almost all t.

The next fact about the minimal braids is the following

Theorem 7 The velocity field u{x,t), corresponding to the minimal braid B, is a
weak solution of the Euler equations. This means that for every vector field v(x, t) €
C'o", such that V • v = 0, and for every scalar function y(x,t),

f [(u, —)+ (u ® u, Vv)]dxdt = 0, (5)
Q

f(u, ̂ y)dxdt = 0. (6)
0

The last fact which we need is the following approximation theorem.

Theorem 8 Suppose that B is a minimal braid, and u(x, t) is its velocity field.
Then for every e > 0 there exists a smooth incompressible flow with velocity field
w{x,t), which is a solution of the nonhomogeneous Euler equations with the force
f(x,t), such that || w(x,t) - u(x,t) ||^< e for allt, and ̂  \\ f(-,t) ||;2 dt < e.

5. The brais are used to construct the flows, described in Theorems 3 and
4. Consider a flow with a piecewise-constant profile U(x-i); then the cylinder Q =
M x [0,T] may be divided into slices Qk, so that U\Q^ = U^. In every such slice
the trajectories are parallel lines with the same slope. Thus, they form a simple,
piecewise-smooth braid.

Now let us describe the braids corresponding to the flows described in Theorem
3. Let us divide the domains Mk, Mk+i, the bases of the cylinders Qk, Qk+i, into
small subdomains Mk,j, Mk+i,i. Let us pick one point Xk,j in every domain M^j,
and one point x^+^i in every domain Mk+i,i. Let \k,j, \k+i,i be the trajectories,
passing through the points (xkj, 0) and (xk+i,i, 0). Their endpoints in M x {T} are
denoted by (y^T) and (i/fc+^.T). The trajectories, passing through A4j x {0},
and through Mk+i,i x {0}, form subbraids B^j and Bk+i,i.

Now let us define a new braid By. First let us define its threads A^ and X'^i,
passing through the points (a-^,0) and (a^i^.O). They are straight lines, passing
through the points {y^T} and (y^^.r), obtained from the points (^j.T) and
(yk+i,i, T) by the shift in the ^-direction by, resp., (^fc+l) -x^) and (x^-x^).
These lines do not, generally, intersect.

Now let us define a piecewise-smooth braid Bg. It coincides with B outside
Qk^JQk+i- In the last domain the braid b'o consists of smooth incompressible sub-
braids B^ and B'^i with the bases M^ x {0} and A4+i,< x {0}. Each sub-
braid contains one line A^ and A^(. The interfaces between these subbraids are
piecewise-smooth. It is easy to construct such subbraids, while they are not unique.
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Now let us use Bg as a reference braid, and construct a minimal braid B', isotopic
to B'o. Using Theorems 5-8, we construct a smooth flow w(x,t)^ supported by a
smooth force f(x,t), such that ^ \\ f { ' , t ) ||^2 dt is arbitrarily small, provided T
is big enough. This flow is Z^-close to U at t = 0 and to V at t = T; after a
small modification of w(x,t), requiring an Z^-small correcting force, we obtain a
flow described in Theorem 3.

The proof of Theorem 4 is similar; but in this case the curves A^ and Aj^ / are
going from points (^j,0) ((^4.1^,0)) to the points {ykj.O) ((?/A:+U,O)) , and some
of the curves \^ and A^ ^ are linked.

6. Theorems 3 and 4 are true also for circular flows in a disk, with the angular
momentum staying in place of momentum in Theorem 4. But for generic 2-d domains
the situation is not so clear. We don't know, whether there is an integral of motion,
similar to the angular momentum, in any domain different from the disk. If such
integral does not exist, which is the most likely, then the natural conjecture is that
for any two flows with equal energies the conclusion of Theorem 4 is true. But
this behavior is paradoxical: just imagine a nearly circular flow in a nearly circular
domain (e.g. ellipse), which after some long time changes the sign of the angular
velocity. This question requires more thinking.
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