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Journees Equations aux derivees partielles
Saint-Jean-de-Monts, 2-5 juin 1998
GDR 1151 (CNRS)

Geometric Heat Kernel Coefficients for APS-Type
Boundary Conditions.

Gorm Salomonsen.

Abstract

I present an alternative way of computing the index of a Dirac operator on
a manifold with boundary and a special family of pseudodifferential boundary
conditions. The local version of this index theorem contains a number of
divergence terms in the interior, which are higher order heat kernel invariants.
I will present a way of associating boundary terms to those divergence terms,
which are rather local of nature.

0. Introduction.

Given a closed realization of a Dirac-type operator D between vector-bundles
E\ nd £'2 over a compact manifold K of dimension n with smooth boundary. If
the realization of D is given by pseudodifferential boundary conditions it is known
[Gri], [GS] that there exist coefficients a^ and a\^ such that

o
tr^e-^)- ̂  a^ri+ ̂  (a^log(f) + a^)rt, for t -> 0.

0<A;<n A;=-oo

Here Ai = D*D, ̂  = DD" and y £ C°°(K, End(E)). The unprimed coefficients
are locally determined, whereas the primed coefficients are globally determined. By
locally determined we here mean, that there exist local formulas di^(x) on K and
bi,k{z) on 9K^ such that

ai,k = / a^k{x)dx + / b^k(z)dz.
JK J3K

In the interior of K there is a local contribution to a\ ̂  also, given by the standard
local formulas for closed manifolds. That means, that the non-local contribution to
a^ arises from the behaviour of tr^e'"^1)^,^) arbitrarily close to the boundary
only.

In this paper we will for some special cases construct boundary contributions
bk(z) for k < 0 corresponding to the a^. These boundary contributions depend
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on the choice of self-adjoint boundary conditions inside a class of pseudodifferen-
tial boundary conditions, which we will define using some resent results of Gilles
Carron. The proof of the self-adjointness is a modified version of a proof for the
self-adjointness of a similar operator in [Sal]. In addition to Carrons condition of
non-parabolicity at infinity it makes use of Assumption 2.2, which is non-trivial to
establish, but which can still often be established for manifolds with fixed or asymp-
totically fixed geometry near infinity. It has apparently still not been established in
the case of the extension of a manifold with corners considered in [HMM], [Mii].

We will have E = E^ = E^ D = D*, n := dim(/<) € 2N, and y will be the
involution corresponding to a superstructure on E. Thus the expansions we will be
interested in are the expansions of

tr(Te^2).

By standard arguments it follows that in this case the a\^ vanish for k 7^ 0. This
does however not mean, that they vanish locally. It just means, that the boundary
contributions cansel with the contributions from the interior.

Each of the pseudo-differential boundary conditions, for which we will be able to
define formulae at the boundary, corresponds to a way to extend K to a manifold
X with 9X isometric to 9K^ product structure at the boundary and which are such
that the distance from K to X is constant. The boundary terms are such that they
split into a local term and a term, which depends only on the derivatives of the
various structures on X along the shortest geodesic from z 6 9K to 9X. They are
thus not local in the sence that they can be computed in terms of the derivatives
of the various structures in a point at the boundary, but they are still less than
global and nicely given in terms of the geometric construction, which leads to the
pseudodifferential boundary conditions. For k = 0 the corresponding term in the
case, where K has product structure close to the boundary, is the density of the
Ty-invariant of the boundary plus a term involving the kernel, which can not be given
in the same way. If D is replaced by the operator D + rm we shall see that all bk
are indeed global for k even. The global contributions are in this case multiples of
the global contribution for k = 0 in the case m == 0.

We remark that it does not follow from the construction that the terms bk(z)
are really related to the local behaviour of the heat super-trace. There could be an
additional divergence term.

The results of this paper basically gives a way of extending index theorems of
the Atiyah-Patodi-Singer type from product type boundaries to smooth boundaries.
What is new is that the boundary conditions are given explicitly. In order to ex-
tend the results to other open manifolds than manifolds with cylindrical ends, some
"product case" will in each case have to be solved rather explicitly. It would be
interesting to find ways to replace the "product case" by a limiting case in the form
of a complete Riemannian manifold.

1. Manifolds Non-Parabolic at Infinity.

In this section we will recall the setup introduced by Gilles Carron in [Cal],
[Ca2], [Ca3].
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In the following M will be an even dimensional complete Riemannian manifold,
and E ̂  M will be a Dirac bundle, i.e. a Hermitian vector bundle supplied with a
connection and a structure of Clifford multiplication, such that the three structures
are compatible. Let D be the associated Dirac operator.

In some of the terminology, when we refer to M, we automatically include E.

Definition 1.1. M is said to be non-parabolic at infinity if there exists a compact
subset K of M such that for any precompact open subset U of M, there exists a
constant C(U} such that for any y € C^(M, E),

MLW) < c(u} (iMkw) + \W\WE)) . (i.i)
Definition 1.2. Let W be the completion of C^O(M^E)/kev(D\coo(M\K,E)) with
respect to the norm

ll^ll^=ll^lll2(A^)+ll^lll2(M,E)-

Then W is a Hilbert space.

We notice that manifolds with cylindrical ends are examples of manifolds non-
parabolic at infinity [Cal], where K can be taken to be any compact set containing
all of the non-cylindrical part of M, and that manifolds for which the self-adjoint
extension of D\C°°(M,E) ls a Fredholm operator make up other examples.

Definition 1.3. For any manifold X and any Hermitian vector bundle F i—>- X
supplied with a Hermitian connection we define

M^(X, F) := {/ € 27(X, F) | VO < j ^ k : VV € 27(X, TM '̂ ® F)},

W^{X, F) := Closure of Co°°(X, F) in IV^(X, F),

W^^X, F) := {/ € 27^(X, F) | \/U @ X : f\u € W^^U, F)}.

Here U € X means, that U is a precompact open subset of X. If further F is a
Dirac bundle with an associated Dirac operator D we define

H\X, F) := {/ € L\X, F) | VO < j < k : D^ € L\X, F)},
H ^ ( X , F) := Closure of C^°{X, F) in H\X, F),

H^^X, F) := {/ € L^X, F) | \/U (£ X : f\u € H\U, F)}.

D

For the complete Riemannian manifold M all powers of D are essentially self-
adjoint on CyW E) [ch]. so H^{M. E) = H^M, F). Further, if the curvature term
in the Weizenbock formula is bounded it follows by an application of the Weizen-
bock formula, W^(M,E) = ̂ (M.F), and in general W^(M,E) ̂  ^(M,F),
IV^(M, F) -> ^(M, F). If U (s M we further have H^U, E) ̂  W^[M, F).

In general W is not even a space of sections of M, but we have:

Theorem 1.4. (Carron) If M is non-parabolic at infinity
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a) The inclusion C^°(M^ E) ̂  ^^(M, E) extends by continuity to a map W \-^
H^M.E).

b) The linear map D :W ^-> L^^M^E) is a Fredholm operator.

c) I f f G W has support on M \ K and satisfies Df = 0, then f = 0.

D

There are a number of indices, which can be considered. First define the extended
index

Inde(^) := Index(Z) : W ̂  L\M, E)).

The kernel of D* : L2(M^ E) i-> W is the I^-kernel of J9, so another description of
Inde is

Inde(J9) = dim(ker(J9|^)) - dim(ker(jD|^i(M,j^))).

Thus Inde(-D) is the dimension of the space of asymptotic behaviours of elements of
ker(J9]^v) up to elements of L2. In particular Inde(D) >_ 0.

Let T € (7°°(M, E) be a parallel unitary and self-adjoint section anticommut-
ing with the operator of Clifford multiplication by any vector field. Then the ±1
eigenspaces of r gives a superstructure E = £+ O.EL on E. At least one such involu-
tion is always given by the volume element in the Clifford algebra. With respect to
this superstructure W and Z^M, E) split into orthogonal direct sums W = W+OW-
and ^(M.E) = L2(M,E+) © ̂ (M^). Let D-^ : TV± ^ L^M.E^) be the re-
striction of D. For / any section of E we write / == /+ + /- for the components of
/ in E^. and £L. Under these assumptions we may define

Inde^) := dim(ker(D|^J) - dim(kei(D^(M^)))'

2. A Condition Ensuring Self-Adjointness.

In this section we will consider the question, when there is a generalization of the
Atiyah-Patodi-Singer boundary conditions on K^ such that the operator DK on K
has the desired index, Inde^'1'). It turns out that the existence of such boundary
conditions is rather independent of K^ but that we can only prove the self-adjointness
properties under some conditions on the spectrum of DM ''= D\H\(M,E)' For smooth
boundaries these results are to a great extend covered by the results of Carron
and existing theory of pseudodifferential boundary value problems. Non-smooth
boundaries are however of considerable interest for the author, who is working with
index theory for manifolds with corners.

The domain, which we will consider as the domain generalizing the domain of
the Dirac operator on K with Atiyah-Patodi-Singer boundary conditions, is given
by

V(DK) := {f\K I / € W , f , € L\M,E) and Df € L\K,E}}. (2.1)
<"<«>
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This domain is the restriction to K of the space

V(DK) := {/ € W | /- e ̂ (M, £) and D/ € ^(J< E)}. (2.2)

Domains, which are just as fundamental, and which correspond to augmenting
DK with respect to the scattering matrix instead of with respect to the superstruc-
ture in the case of a manifold with cylindrical ends are given by

V(DK,S) := {f\K I / € H\M, E) and Df € L\K, E)} C kev{D\w)\K> (2.3)

T>{DK,S) := {/ € H\M, E) | Df € ^(A', E)} © ker(D|^). (2.4)

Lemma 2.1. If (1.1) holds for M and K y and K is the closure of an open subset
of M , then DK and DK,S a^ symmetric and closed operators.

The involution r anticommutes with DK and DS,K'

Proof: The operator D interchanges IV+ and W- and if f 6 IV+ n T>{DK), g €
W^nV(DK),

{DKf\K,g\K}^(K,E) ~ (^^^^(A^) = ̂ f ^ ^ L ^ M ^ E ) ~~ (^ ̂ L^M^) •

Since / € IV, / can be approximated by a sequence { f j } of sections of C^°(M^E)
with respect to || • \\w' Consequently this can be rewritten

== ̂  ̂ f ^ ^ L ^ M ^ E ) - { f ^ D9^L^M^ • (2-5)

Here we have used D f j -^ D f in L^M.E), g € H\M,E}, (Dg)\M\K = 0 and
||/j — f^L^^K.E) —^ 0. Clearly (2.5) vanishes for each j. Since V(DK) is the space of
restrictions to K of elements of V(DK) it follows that DK is symmetric.

Now let f , g € T>(DK,S)' Then we may write / = /i + /2, g = fi^i + 92, where
/i,5i € H\M,E} and /2,ff2 6 ker(D|w). We get

{DK^sf\K,g\K}^(K^E) ~ {f^^K^K)^^^)

= <D/1^)L2(M,E) - (^1^ D9}L^Mf) - ̂ 2, ̂ l)L2(M,E) • (2-6)

Let {5^} € (7^°(M, £) be a sequence converging towards g with respect to the norm
on W. Then since D f , € L\K,E}, {g,)\K -^ 9\K in L\K,E}, Dg, -^ Dg in
L^M, £) and /i € L^M, E) it follows that

{ D f l , g ) L 2 ( M ^ E ) - (/I. D9}L^M^) = }^ ^ f ^ S ^ L ^ M f ) - ̂  WL^E) = 0-

In a similar way f ^ can be approximated by C^-sections, giving that the third term
in (2.6) vanishes since D f ^ = 0.

That r anticommutes with DK and DS,K is trivial.
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That DK,S is closed follows since D : ^(M.E) i-> L^^M^E} is bounded, and
thus that the inverse image under D of the closed subspace ^{K, E) of I?{M, E)
is closed in ^(M, £'). It follows that D is closed on the domain

{/ € H\M, E) | ZV 6 ^(K, £)}. (2.7)

Since kev(D\w) is finite dimensional, 2 ,̂5 is a finite dimensional extension of a
closed operator, and is therefore closed.

That also DK is closed follows since D~^ is a direct summand in the closed
realization of D defined on the domain

{/ e W | Df G L\K,E}},

so that D~^ is closed. Further D~^ is a direct summand in the domain (2.7), so that
also D~^ is closed.

This proves the lemma. D

In order to get self-adjointness we need an additional assumption:

Assumption 2.2. For every f C L^^M, E), iff±ker(D\w) the limit

^(DM+ier'f

exists in L^^M^E}.

Lemma 2.3. Assumption 2.2 holds if the spectrum of DM in a neighbourhood ofO
consists of a discrete point spectrum together with an absolutely continuous spectrum
of finite multiplicity given by a finite sum o f C1-families of generalized eigensections.
In particular it holds for manifolds with cylindrical ends.

In this case kev{D\w) is the direct sum ofker{D\ffi(M,E)) 0'nd the space of gener-
alized eigensections to the eigenvalue 0.

Proof: Since the continuous spectrum near 0 is given by a sum of C^-families of
generalized eigensections it follows that the absolutely continuous part of the Fourier
transform (with respect to a spectral representation of DM) of a section with com-
pact support is C1 in a neighbourhood of 0. Let f j be a sequence of C^-sections
convergent towards an element / e ker(D\w) in W. Considering the image in the
spectral representation gives, that / is given as / = /1+/2? where /i 6 ker(D]^i(M,E))
and /2 is a generalized eigensection to the eigenvalue 0. On the other hand every
generalized eigensection to the eigenvalue 0 can be constructed as an element of
W in the spectral representation, so it follows that ker(D\w) is the direct sum of
ker(£)]^i(^f^)) and the space of generalized eigensections to the eigenvalue 0.

It now follows that the Fourier transform of a section with compact support
orthogonal to ker(D\w) is C1 in a neighbourhood of 0 and vanishes in 0. This
implies that Assumption 2.2 holds. D

Theorem 2.4. If Assumption 2.2 holds for M and (1.1) holds for M and K, DK
and DK,S ^^ self-adjoint.
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Proof: Let P be the orthogonal projection on ker(Z)jw) with respect to the inner
product on IV. We notice that this projection is also an orthogonal projection with
respect to the T^-inner product on K.

For /G L\K,E) we define

(DK^S + P)-V := (Pf + (1 - P) }^{D + ie)-1^ - P)/)|K.

Then by Assumption 2.2 (DK,S + P)~1 maps to T)[DK,S\ Further (DK,S + P)~1 is
everywhere defined and closable since it is contained in the inverse of {DK,S + P)?
which is a closed operator. Every everywhere defined closable operator is closed, and
every everywhere defined closed operator is bounded, so (DK,S + P)~1 is bounded.
But then DK,S + P is a closed symmetric operator with a bounded right inverse.
Every such operator is self-adjoint, so DK,S + P is self-adjoint. Since P is bounded
it follows that DK,S is itself self-adjoint.

Let V be the orthogonal complement of ker(JD|jjri(M,£;-)) m ker(D|^v_) and let Q
be the projection on V with respect to the inner product on W. Further let 9 be
the realization of D on the domain T>(DK) + ̂ (DK^)' Then it is easily tested

ker(3 + P) ={/=/+ © /- € DW) ® ̂ ?,5) I DV = -/-, D^f- = 0,
/-lker(^),P/+=0}.

If some / 6 ker(3 + P) satisfies that /- = 0 it follows that DK/+ = 0 and thus that
/+ G kev{DK,s)' But then DK,sf+ = P/+ = 0, so /+ = 0. Consequently the map
J : ker(9+P) \-^ V, given by J(/+©/_) = /-, is injective. Now assume that f ^ G V
is given. Then the extension by zero of /_ to M is ^-orthogonal to ker(jD[^i(jv^E))-
Since D\w^. is Fredholm it follows, that JL 6 Im(D[^). This gives that /- is in the
image of D~^. Consequently there exists an /+ such that /+ + /- 6 ker(3 + P). It
follows that J is a bijection. Let J~1 be the inverse of J and let P+ be the projection
on ^(M.J^). Then

{DK + P)-1 := (1 - Q)(DK,S + P)-1 + P^Q

is a bounded right inverse of DK + P, so also DK + P is self-adjoint.
This proves the lemma.

D

Notice that c) of Theorem 1.4 implies that in fact D{DK) is isometrically iso-
morphic to the subspace D(DK) of IV. Using this isomorphism, the continuous
imbedding of W in H11100 and a cutoff function, we get a Calderon extension opera-
tor C : T>(DK) ̂  IV^^M, £'). This gives by Rellichs lemma that DK has a compact
resolvent and therefore, that DK is a Fredholm operator with a discrete spectrum
with eigenvalues of finite multiplicity.

From the construction it is clear, that ker(JD^) ^ ker(D|^) and that ker(D^) ^
ker(£)|jji(M,£;_))- Thus in particular

Index(D^) = Inde^). (2.8)
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Remark: (2.8) is remarked in [Ca3] for a special case. For smooth boundaries
it would also be natural to prove (2.4) using the results of [Ca3] about the Dirac-
Neuman operators together with the general theory for pseudodifferential boundary
conditions [BW], [Gr2].

After checking that the space of extended harmonic sections on a manifold with
cylindrical ends belongs to W it is easily seen, that Inde(Z)+) is exactly the index
of Atiyah-Patodi-Singer (with the opposite augmentation) in the case of a manifold
with cylindrical ends. This follows because the domain of the operator denned
by Atiyah-Patodi-Singer is contained in V(DK), and every self-adjoint operator is
maximally symmetric. Thus since DK is self-adjoint, it coincides with the operator
denned by Atiyah-Patodi-Singer.

3. Inheritance of Self-Adjoint ness and Index.

Let the notation be like in the previous section, and assume that (1.1) is satisfied
for M and K. In this section we will study what happens, when K is replaced by
another subset K' C M, for which we do not know, whether (1.1) holds. We can
not expect too much in complete generality, but everything worth mentioning holds
under the following mild assumption:

Assumption 3.1. The subset K' is the compact closure of an open subset of M
such that the restriction

R: ker(Z)|î ) ® ker(Z)(^i(M,£;_)) ̂  L^K', E)

is injective.

Theorem 3.2. Assume that Assumption 3.1 is satisfied. Then the operator DK'
defined for K' like for K in (2.1) is self adjoint, Fredholm, and IndexfDt,,) =
T f / n-i- \ V A /Inde(D +).

Proof: If necessary K can be replaced by K U K' without changing W, so we may
assume, that K' C K. We notice, that

V(DK') = {/|A" | / € V{DK) and DKJ € L\K', E}}.

iFrom that and Assumption 3.1 it easily follows, that DK' is symmetric on T>(DK')
and that ker(DK') ^ ker(Z)/<-) through extension and restriction. Assumption 3.1
further implies, that the T^-norm on V(DK) is equivalent to the norm

\ /N ' ̂ V(K',E) + II^/HL^A^).

The restriction of this norm to ker(Z?A-) is further the same as the T^-norm of the
restriction to K'. Consequently the orthogonal projection P on the kernel of DK is
denned equally well in 'D(K') and D(PA-). Again we may define a bounded right
inverse of DK' + P by

(DK' + P)-1 = RK'(DK + P^EK, (3.1)
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where RK' is the operator of restriction to K/ and EK is the operator of extension
by 0 from L^^K^E} to ^{K.E}. Thus DK' is self-adjoint. It is further Fredholm
because (3.1) is a compact operator. Since it has the same kernel as DK and since
T preserves 25(jDj^), it has the claimed index by (2.8).

This proves the theorem. D

Example 3.3. Let M be a manifold with cylindrical ends Z x [0,oo), K = M \
(Z x (l,oo)) and let K' be the closure of an open subset V of K, such that U' -̂>•
K \ 9K induces a monomorphism in cohomology. Since every non-zero harmonic
form on K satisfying the Atiyah-Patodi-Singer boundary conditions induces a non-
zero cohomology class in H"{K^C)y it follows by the monomorphism in cohomology
that it can not vanish on K'.

Example 3.4. Assume that M and K are like in (3.3) and that E is some Dirac
bundle such that the curvature term in the Weizenbock formula is non-negative as
an operator on the fibres over K \ K'. Then Assumption 3.1 holds.

Example 3.5. If K f has more than one connected component and each component
satisfies Assumption 3.1, the restriction of an element ofker(D^) to each component
determines the element completely.

4. Traces of Dirac Operators.

Let M, E^ Z), T and K be like in the last section such that (1.1) holds. Further
let m G R. The Dirac operator with mass term is given by

H = DK + mr.

Since mr is bounded and self-adjoint, H is self-adjoint on T>(DK)-
For k € 2Z +1 we define

tr(^)=^;-fc),

where T](H^ s) is the ^-function of H^ given by analycity and that for Re(^) ^> 0

ri(H^s)= Y^ sign(A)|A|-5. (4.1)
A€spec(Jf)\{0}

Thus we immediately see, that the definition is a reasonable generalization of traces
of odd powers of H. The traces of the even powers are defined using the (^-function
instead, and can not be treated in the same way as the traces of the odd powers.
For the power k = 0 both the 77- and the ^-function stand to disposal, giving
regularizations of the signature of H and the dimension of L^^K^ £'), respectively.

Lemma 4.1. For k € 2Z + \, t r ( H k ) is well-defined and is given by

tr(Hk)=mklnde{D+). (4.2)

In particular t!(Hk) depends only on m, k and M, but not on K.
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Proof: First we notice, that the fact that the domain of DK is the restriction
of a subspace of H^^M^E) implies, that the heat kernel e~^ (a*, y ) is smooth on
the interior of K x K. For irregular boundaries, however, the heat kernel may
have singularities at the boundary. Composing with a Calderon extension operator
C : 'D(DK) ̂  ^^(U^ E) for some open set U with compact closure containing A",
and the restriction RK to /<, we get an operator

CC-^RK : L\M,E} ̂  W^\M,E\

which coincides with e"^2 when integrated up against L^^K^E} ® L^^K^E}. Let
^ € C^°{M^E) be a cutoff function, which is identically equal to 1 on U^ and let
M^ denote the operator of multiplication by ^. Then we may rewrite

CC-^RK = {M^{DM + iY'M^ ((DM + Z^CC^RK) .

Here DM denotes the self-adjoint realization of D with domain ^(M.I?). The
operator M^^DM+i^M^ is in some Schatten class (i.e. some power of its absolute
is of trace-class. See [Pe]). Since the Schatten classes make up ideals in B(H) it
follows that e"^ is of some Schatten class. By the semigroup property it follows
that e~^2 is of trace class for all t > 0. The trace class norms of e~^2 and He"^2

can be estimated by a constant times a power of the norm of He^^ and H2e~tH ,
respectively, and can thus be seen to grow at most polynomially for t —> 0.

In the same way it follows that (H 4- Pker(H))"1 ls °f some Schatten class, so that
r j ( H ^ s) is defined for high values of Re(.s).

Taking the Mellin transform in the standard way gives

^s) = p7^ rm^He^dt
1 (~2~; JO

1 /*00 f \
= r7^ / ^ {tr(^^) + mtr(Te-^)} e-^dt. (4.3)U ~ 2 / < A ) l )

Here the first trace vanishes even locally because DK anticommutes with r. Thus
if m = 0, r](H\ s} vanishes identically. Otherwise, since DK commutes with D]^
and anticommutes with r, contributions to the second trace coming from non-zero
eigenvalues can be seen to vanish globally.

Consequently, for m > 0

mIndex(P^ f00 _ 2
^^)- r(^-) h

= m-5Index(^) = m^Inde^).

This proves the lemma for m > 0. For m < 0 we replace m by —m and r by —r
and exploit, that k is odd. D

"s
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Remark: Lemma 4.1 holds for all values of k € R. The interpretation as a trace
is however only meaningful for k G 2Z + 1. Further the local results only hold for
& G 2 N + 1 .

In the following we assume m > 0. As above the generalization to m < 0 follows
by replacing m by —m and r by —r. The expansion of the supertrace of the heat
kernel of H in the interior of K is local, given by

n

mtI[Te'~iH\x,x}} - m V aj{x)r^ (4.4)
j=-oo

for t —^ 0. Further we get the estimate

mtr (re-^2^ ̂ )) < mGe-^2 ; t > to > 0

locally uniformly in the interior of fc. Consequently the heat trace can be computed
locally. The formal analytic continuation of the ^-function over the interior is given
by

.».W .) = ̂  [^ iJ^ + /, ̂  ̂ } .

where O^v is regular on any compact subset of C for N high enough. This gives the
result

tr(g')=n.(7 '.^ &+t>)
\JK Hes(l, —f-) y

= m f / (-1)^ f^—1)! a.^(x)dx + b,} .
\JK \ z / /

Here 6 ;̂ is a term coming only from the boundary and the boundary conditions
imposed on DK' Clearly the value of b^ is given by

bk = m^Inde^) - (-1)^1 (k-1}! / a.^i{x)dx. (4.5)
\ L / J K

The aim of the next section will be to find suitable local formulas for bk for a family
of boundary conditions in the case, where 9K is smooth.

5. Smoothly Imbedded Manifolds with Boundary.

Let K be a smooth compact manifold with a smooth boundary Z, and assume
that K is smoothly imbedded in some complete Riemannian manifold N. N does
not need to be non-parabolic at infinity. We will further assume/that E i-> N
together with its Hermitian structure, connection and structure of Clifford multi-
plication is natural, determined from the local geometry of N together with some
topological data. Further we assume, that the topological data restrict to imbedded
submanifolds of full dimension.
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Some tubular neighbourhood Tz of Z is diffeomorphic to (—6,e) x Z through
the Fermi coordinates around Z. Further the interval (—6,5) may be oriented such,
that (—£,0] x Z is mapped to K and (0,6) x Z is mapped to N \ K.

Let ^ € (7°°(R) be a function, such that 0 < \{v} < 1 for all v e R, x(^) = 0
for ^ < | and ^(t;) = 1 for v >_ ^

Let X be the manifold J< U TZ, supplied with the metric g^ which coincides with
the metric g1^ on the image of K in JC, and on Tz is given by

^(i-xM^+xW^+A
where ^ is the projection Tz '->• (—656) and g2 is the pullback of g^ to Z. Then
(X, (/) is a manifold with boundary Z and a product metric in a neighbourhood of the
boundary, which contains K as a smoothly imbedded submanifold with boundary.
By the assumptions on £\ there is an associated Dirac bundle Ex \—^ X, for which
all structures are of product type near QX and such that E^ = E\K.

Lemma 5.1. The vector-field — is geodesic with respect to g.

Proof: It is easily checked that g has a decomposition

f I 0 \
"'lo a - )

with respect to the decomposition
r\

r(x\/<)=span{—}erz,
dv

induced by the Fermi coordinates. Consequently, in local coordiates (t;, -2:1,... , Zn-i) =
(a- i , . . . , Xn)i where each z j is a function of an open subset of Z, the inverse matrix
of g takes the form

,-=(;,°,). (..i)
Now recall the formula for the Christoffel symbols in terms of the metric [Gi, p. 143]

pfe _ 1 ̂  km (993m Qgim Qgij \ /- ^

""^ [r9x7+~9^~9^)• ^

Combining (5.1) with (5.2) gives

pk 1 V^ J^m f^im , Qg\m 9gn\
^=^9 ^-+^--^-= 0•
.A: ^ 1 v^ km (Sgim Qg\m _ 9gn
11 2^;' V^i 9x, Qxm,m=l

Consequently V^ ̂  = 0, where V5 denotes the Levi-Civita connection with respect
Qv

to g. This proves the lemma. D

Corollary 5.2. We have
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• Tz is a tubular neighbourhood of 9K with respect to g.

• The outward-pointing geodesic with respect to g normal to 9K starting in a
point z 6 9K gives the shortest path from z to 9X.

D

Let M be the extension of X to a manifold with cylindrical ends. Then by the
product structure there is an extension of E and its structures to a Dirac bundle on
M, with product structure on the cylinder. We denote this Dirac bundle by E also.

We have allready remarked, that M is non-parabolic at infinity with X in place
of K^ and that Assumption 2.2 holds for manifolds with cylindrical ends. We will
further assume Assumption 3.1 with K in place of K\

First we study tr(Dx + mr). Since Dx has standard Atiyah-Patodi-Singer
boundary conditions, a parametrix for e"^^-, •) for t —^ 0 is given uniformly in a
neighbourhood of 9X up to an error in 0^) for any N^ by the corresponding heat
kernel for the Dirac operator 3 on the full cylinder (—00, e] x Z with Atiyah-Patodi-
Singer boundary conditions. The Dirac operator 3 takes the form

8=.(^A),

where 7 is Clifford multiplication by -j- on (—00, e] x Z and u is the distance to 9X.
The operator A = —^Dz is a Dirac operator on Z commuting with r, which thus
has a decomposition A = A+ (B A- with respect to the eigenspaces of T.

Let y\ run over an orthonormal basis of eigensections of A, with corresponding
eigenvalues A, counted with multiplicity. It is well known [APS, 2.2.2] that

tr (re-^^u, z), (n, z))) = ^ sign(A)9 {^l-erfc (— + \\\Vt} \ |<^)|2,
A6sp(A+) ou lz w< ^

where erfc is the complementary error function given by

9 r°°
erfc(;r) = -= \ e-^du,

V71' Jx

and sign(O) is set to —1 (compared to [APS], we have augmented oppositely). Inte-
grating over [0, oo) with respect to u gives like in [APS]

f00

k(t,z):= \ ^{re-^^zUu^Wu
Jo

=- E ^erfcdAI^)!^)!2 (5.3)
Aesp(A+)

and hence, differentiating with respect to t

A/M=——— E Ae-^(.)|2.
^4^)
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The part of (5.3) coming from u G [^ oo) vanishes uniformly with arbitrarily many
derivatives in the limit for t -> 0 for every S > 0 and will therefore not affect the
results.

We notice that the asymptotic expansion for t -^ 0

^)-—^ E r^) (5-4)
J==—00

implies that k(t^ z) has an asymptotic expansion of the form
n

k(t, z) - do(^) log(<) + ̂  r^), (5.5)
J=-00

where do and each dj except from do is local. Inserting this expansion in (4.3) we
realize, that

/ do(z)dz == 0
Jz

since otherwise (4.3) would not be regular in -2N +1. In order to pass from the
global to the local level we will therefore have to subtract this term, which would
otherwise lead to local divergence. Consequently we set

k{t,z)=k(t,z)-do(z)\og(t). «

The heat kernel, which we are really interested in, is the heat kernel /C of H. 1C
is given by

JC^z)=e-tm2k(t,z). (5.6)

Again, in order to get local convergence, we have to subtract the logarithmic terms,
which we know do not contribute globally. Thus we set

K:(t,z)=e-tm2k(t,z).

Since /C(^, z) is uniformly exponentially decreasing for t —^ oo it follows that the
integral

1 /•OO

Fc?u ''̂ '̂
is uniformly convergent in z for Re(s) » 0. The local analytic continuation of this
integral now is produced from the asymptotic expansion of K(t, z) for t —> 0, which
again only depends of m2 and the asymptotic expansion of K(t, z} for t -^ 0. This
proves the following:

Proposition 5.3. The term bk,e corresponding to the term bk in (4.5) for X is given
by:

^ = / h(z^)dz := (-1)^ f^-1); / e.^(z)dz^ (5.7)
J z \ z / J z
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where €i(z) is the Vth coefficient in the asymptotic expansion

n

A^,z)~ ̂  e,(z)t-^. (5.8)
j==-oo

D

Remark: The local expansion (5.8) does exist. The coefficients e j ( z ) are however
only globally defined since they depend on ker(A+).

Now consider the family {Kt}te[o,e] °^ imbedded submanifolds of X with bound-
ary given by taking

Kf = {x e X I dist(^, K) < t}.

Further let 6^ be the boundary term for Kf corresponding to bk in (4.5). Obviously
(4.5) gives for t^ € [0,6], t > t'

, , , -^\k=^ ( ^ ~~~^\\ f ( \ jbk,t - bk,t' = (-1) 2 ——— ! / a-k-^i[x)dx.
\ z / JKi\K,,

The volume form dx on X can on the collar be written

dx = Q(z^t)dzdt^

where dz is the volume form on Z, dt is the volume form on [0, e] and Q(z^t) is some
non-vanishing real-valued function. It follows

^ = (-D1? (̂ -1W ̂ ,(,,oe(,,<)&.ot \ z / J z
Let

A-A:-n(^)= / a-k+i{^^)ds.
Jo

Then we may define

bk{z,t)=b^e)-(-l)^(k-^\ F a.^i(z^)Q{z,s)ds
\ L / Jt

= b^e) - (-1)^ f^-1)! ([A.^(z^Q(z^ - r A.^^s)Q\z^)ds} .
\ z / \ Jt /

We can exploit, that A-A;+i(^,0) = 0 and that 0(2;, e) = 1 to rewrite

6,M) = b^e) - (-1)^ f^-1)! fA_,+i(^,£) - I'A,w(z,t)Q'^t)dt\.
\ z / \ Jo /

Thus we have proved:
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Theorem 5.4. The term bk for K is given by

^ = (-1)^ f^-1)'/ e.^{z}dz
\ z / J z

-(-1)^ f ^ — — ) ' / fA-,+i(^)- / A^i{z,t}Q\z,t}dt\dz. (5.9)
\ z / J z \ Jo /

D

6. Explicit Formulae in Terms of m.

In the last section we deliberately avoided writing out formulae in terms of m in
order to simplify the presentation. In this section we will complete the computations
by giving the full formulae. Thereby we become able to separate local terms from
global terms.

We will in the following let {aj(x)}, {cj(z)}, {dj{z)} and do(z) have the same
meaning as in the last section, defined in (4.4), (5.4), and (5.5), respectively. We
further define {a^} by

n

tr^e-^)^)- ̂  a°^x)t-^
J'=-oo

Let r(z, s) be the analytic continuation in s of the integral

r{z,s):= I t^ltT{A^tA2^(z,z)dt.
Jo

In s = 0, r(z^ s) has a simple pole, so we may define coefficients by

r[z, s) = rzl^l + ro(z) + o(l) ; for s -> 0.
s

Notice that -^ro(z) is a density, which integrates up to the 77-invariant of A+, so
that ro(z) is not locally determined.

Lemma 6.1. We have the following formulae

|ZL=1|
L 2 j f_n<?^2g

^) = E {-^^^^^ (6.1)
g=0 q'

W = ̂ , (6.2)

^)=^^) ; j ^O, (6.3)

^)=——ro(^)+J ^ |^(^)|2. (6.4)
v 7r 0=A€sp(A+)

•s

XI-16



Proof: The formula (6.1) follows since

tr(T.-'W^'(,,,)) ~ ( f; <,;(.)ri) f; t̂ "̂ ..
\j=-oo / g=0 yl

The formula (6.2) is an easy consequence of (5.4). In a similar way (6.3) follows
easily from (5.4). In order to compute (6.4) we first set

fc(z,()=^,()-| ^ h^)|2.
0=A€sp(A+)

Then the integral
y*oo

^(s,z) := / t^k(z,t)dt (6.5)
Jo

is absolutely convergent for Re(^) S> 0. By using the asymptotic expansion (5.5) it
follows that in a neighbourhood of s = —1, the analytic continuation of (6.5) is of
the form

^ .}-~4do{z) i 2{do(z) ~ ̂ EO=A^) '̂ )12) i cm{ ' / (5+1)2 ' S+l + { )'

On the other hand we can integrate by part and get
_c\ foo _i roo i i \ _ ,

^z) = ——— / t^k\z^dt = / <i£±21-tr(A^-M2.)(^^.
<s + 1 Jo v71'^ + I) Jo

The contribution of the analytic continuation of the integral to the residue of ^(.s, z)
in —1 is thus the regular part of the analytic continuation of the integral in —1, which
is easily seen to coincide with ro(^). This gives

——ro(^)=2(^)-^ ^ 1< )̂|2).
v 0=A6sp(A+)

Formula (6.4) immediately follows. D

The coefficients {ej(,?)} were defined in (5.8). Like in (6.1) it follows

m (-l)"m^
e^) = 2^ ^——a\——^+2g(^).

g=0 q'

We notice that if we had replaced JC by /C, there would have been a logarithmic
term for every even j .

It follows by (5.7) that

, / . / ,.b=i f k - l ^ 1 " 2 ^ 1 (-lYm2", , . . .
^,£)=(-1) 2 — . — ' ^ ——I——d,k+wg(z)- (6.6)

v z / 9=0 q-
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Combining this with (4.5) and (6.1) renders

I "4fc - l (

mk-lInd,(D+) L ̂  J (-l)W^ ( r , . f \
73^Ijr7fc^= 2^ ——.I——[ a-k+wg{x)dx + d,k+i+2^)dz 1 .
V / \ 2 / 9=0 -1* WA JZ /

Using that this holds for all m we realize, that

Inde^) = / ao(x)dx + f do(z)dz, (6.7)
J x J z

which is just the Atiyah-Patodi-Singer index theorem for X . For the remaining
coefficients we get

/ a^{x)dx + I d^{z)dz =0 ;p e Z, p < r-, p ^ 0. (6.8)
«/x J z ^

That means, that d^p(z) is a locally defined boundary contribution neutralizing the
contribution from c^p.

We can define coefficients A° like the coefficients A,«/ •*

A;(^f)= [ t a(j(z,s)ds.
Jo

Again a formula similar to (6.6) holds. The above arguments can be repeated with
the additional term, and we get the following

Theorem 6.2. We have the following index theorem for D^

Ind(^)= / ao(x)dx+ t (d,(z) - ( A^z, e) - f A^z^Q^dt}} dz.
J K J z \ \ Jo / /

(6.9)

Further, for p € 2Z, p <, ^ and p ̂  0, we have the following vanishing formulae:

0= / a^(x)dx+ I (d^z)^(A^(z,e)- !' A^z,t)Q\z^dt\\ dz. (6.10)
J K J z \ , \ Jo //

D

Here (6.9) is an index theorem generalizing the Atiyah-Patodi-Singer index the-
orem with the augmentation ker(r - 1). The formula (6.10) gives the almost local
boundary contributions promished in the introduction.
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