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RECENT EXISTENCE AND REGULARITY RESULTS FOR
WAVE MAPS

MICHAEL STRUWE

Proceedings of the St. Jean de Monts PDE-conference, 1997

The setting. We consider maps u from (m-hl)-dimensional Minkowski space to
a compact, fc-dimensional Riemannian manifold ( N , g ) with 9N = 0, the "target".
By Nash's embedding theorem, we may assume that N C R71, isometrically, for
some n > k. We denote as TpN C TpR" ^ R71 the tangent space of N at a point
p, and we denote as Tp-N the orthogonal complement of TpN with respect to the
inner product ( ' ,•} in W1. T N , T-LN will denote, respectively, the corresponding
tangent and normal bundles.

The space-time coordinates will be denoted as z = (t,x) = (a^cxc^m and
we denote as g^u = 9aU = Ua;a the partial derivative of u with respect to a*0,
0 :< a <, m. Also let D = (^, V) = (^)o<a<m and let T] be the Minkowski metric
r] = (^0/3) = (r]^) = (f1ai3)~1 = diag(-l,l,... ,1). We raise and lower indeces
with the metric. By convention, we tacitly sum over repeated indeces. Thus, for
example, 9°' == rf^^Q^. Moreover,

D=-Qa9a-^-^
is the wave operator and

l^^u^jdv^-H2)
is the Lagrangean density of u.

Wave maps. A map u is a wave map if u is a stationary point for the action
integral

^Q)=1 f {Q^Q^dz
21 JQ

with respect to compactly supported variations ^e: R x R171 —^ N, |e| < eo, such
that Ue = u outside a compact set in space-time and for e = 0, in the sense that

^A(^;0)|.=o=0

for any Q CC R x R771 strictly containing the support of Ue — u.
Wave maps then satisfy the relation

Ou J- T^N.

To understand this relation in more explicit terms, fix a point ZQ € R x R771

and let ^4-1,... ,^n be an orthonormal frame for Tp-N, smoothly depending on
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2 MICHAEL STRUWE

p 6 N for p near po = ^(^o)- Then we can find scalar functions X1: R x W"' -^ R,
k < I <_ n, such that near ^ = ZQ there holds

Dn = A^ ° n);

in fact,

X1 = (OK, ;// ° u)

= -9a{9aU^l ° n) + (QaU.Q0^ ° n))

= {9au,dvi(u) ' 9au} = A^)^,^)

is given by the second fundamental form A1 of N with respect to v/i. Thus, the
wave map equation takes the form

Du = A(u)(9aU, 9au) ± TnN, (0.1)

where A = A1^ is the second fundamental form of N.
Examples, i) For N = 5^ C B^4'1 equation (0.1) translates into the particularly

simple equation
Dn = (|Vn|2 - H2)^

Indeed, since n J- TuS1^ it suffices to check that
(D^n) = -^(^n.n) + {9^9^} = |V^|2 ~ |^|2.

ii) Suppose 7: R —> N is a geodesic parametrized by arc-length and u = 7 o ^
for some map v: R x R7" -> R. Compute

-DZA = ̂ (Y^)^^) = 7//(v)^a^a^ - V^)^.

Note that 7' is parallel along 7; that is, V(s) 1 ̂ (^TV for all 5 € R. Thus, u
satisfies (0.1) if and only if v solves the linear, homogeneous wave equation Dv = 0.

Basic questions. In view of the hyperbolic nature of equation (0.1), it is
natural to ask whether the Cauchy problem for equation (0.1) for (sufficiently)
smooth initial data

(u^Ut) |^o= (^o^i): ̂  -^ TN (0.2)

always admits a unique smooth solution for small time \t\ < T. That is, we consider
data UQ: R7"' -^ TV, HI: R771 -> W such that u^(x) C T^^N for almost every
x C R7".

The smoothness hypothesis on the solution and the data may be rather weak.
In fact, for a function u e L^(R x R171; N) it is possible to interpret equation (0.1)
in the sense of distributions provided Du € L^(R xW). More generally, we may
consider initial data (^0,^1) in Sobolev spaces H8 x ^"^(R^TW),.*? ^ 1, and
solutions u of class H 8 , that is, such that (u,Ut) € L^^H8 x H^Or^'nv)).

Then we may ask for which s the initial value pcoblem (0.1), (0.2) with data
(uo.Ui) C H8 x H^^W.TN) admits a unique local solution of class H8 ("local
well-posedness in H 8 " ) and for which s this solution may be extended for all time
and also preserves higher regularity properties of the data ("global well-posedness"
and regularity).

A dimensional analysis tells us what we may hope for. Assigning scaling di-
mensions 1 to each coordinate a-^.O to the function n, the ^-energy in m space
dimensions has dimension m-2s; that is, if s > m, no concentration discontinuities
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on length scales L -> 0 are possible if the IP-energy of u remains bounded. We
refer to this case as sub-critical, in contrast to the critical and supercritical cases
s = m ,^ < ^, respectively.

By a fixed point argument, using only classical energy estimates (for u and
derivatives), for a general hyperbolic equation On = f(u,Du) with a smooth func-
tion / it is not hard to establish local well-posedness of the Cauchy problem in H8,
if s > ̂  4-1.

Using, however, the special geometric, analytic, and algebraic structure proper-
ties of the wave map system, this result can be improved drastically.

Geometric structure. Orthogonality Ou J- TuN immediately implies the
conservation law

0 = {^u,Ut} = ^-r,\Du\2 - div(V^,^).2 at
Integrating over R771, if Du(t) has spatially compact support, we obtain the energy
identity

E(u(t)): = ̂ \\Du{t)\\i^^ = const. (0.3)

Similarly, we can argue for higher derivatives. Suppose (uo, u\) € H2 x H1 (R^1; TN).
Let Q be any first order spatial derivative. Differentiating equation (0.1), we obtain

B(9u) = 9[A(u)(9aU,9au)] = dA^Qu.Q^Q^u) + 2A(u)(9a9u,9au)
with data

(9u,9ut) |(=o= (9uo,9u^) e H1 x L^R^ir1).
Note that, since (14, A (u) ( • , • ) )= 0 by orthogonality, we have

(9ut,A(u)(9a9u,9au)} = -{ut,dA{u}(9u,9a9u,9au)}.
Hence we obtain

dE(9u{t)) = / {0{9u),9ut}dx
dt J{t}xR^

^ C\\dA(u)\\L^ ' t Wt^D^t^dx.
JR^

Since N is compact, dA is uniformly bounded on N. Moreover, by Sobolev^s em-
bedding, we can estimate

( î )!3!?2^)! dx ^ qiD îî ii.D2 )̂!̂ ,
JRrn

where a = 2,3, or 4 if m = 1,2, or 3, respectively.
Thus, by (0.3) we arrive at a Gronwall type inequality

ÎIP ÎIî qiPMW.
A local-in-time J^-bound follows. If m = 1, we have a = 2, and we even obtain
global unique H2 -solutions. We summarize these facts in the following result.

Theorem 0.1. Suppose m <, 3. Then for any data (no^i) € H2 x ^(ir^rAO
there exists a unique local solution u of class H2. If m = 1, the solution extends
uniquely for all time. If (UQ,U\) G H8, s > 2, then so is u.
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4 MICHAEL STRUWE

For m = 1, the above result is due to Gu [11] and Ginibre-Velo [10]; in [17],
Shatah gave a very elegant and concise proof. Finally, Yi Zhou [21] showed that
the initial value problem is globally well-posed even in the energy space H1.

For m = 2,3 the above result also was obtained by Klainerman-Machedon [13]
by a completely different technique. The above proof was first given in [20]; proof
of Theorem 3.3. See also Choquet-Bruhat [2] for early results on wave maps.

Analytic structure. As illustrated best by the wave map system for maps
to the sphere, equation (0.1) also exhibits the special analytic structure of "null
forms" in the sense of Klainerman-Machedon [13].

As a simple model, consider solutions u: R x R771 -> R of the equation

Du = |Vn|2 - H2 on R x R771 (0.4)

with initial data u\t=o = 0,^|(=o = ^i € H8-1^).
Letting v = e", we compute

Dz; = e^Dn - [Vn|2 4-H2) =0

with v\t=Q = l,^=o =u^e H8-^^).

By exact dependence of the solution v on its data in H8 x HS~l(Rm), we have
v € (^(^^(R771)). On the other hand, a necessary condition for v to arise as
v ^ eu from a (local) solution u to (0.4) is v > 0 (for short time), which requires
H8^) ̂  L^r71), that is, s > f.

In remarkable agreement with this classical example, Klainerman-Machedon [14]
establish the following result.

Theorem 0.2. The initial value problem (1), (2) is locally well-posed for data
(no^i) e H8 x H^^.TN) with s > f.

This result underscores the importance of the critical case s = ^, in particular,
the case s = 1 in m = 2 space dimensions. Progress on this issue can be made by
taking into account a third structure property of the wave map system.

Algebraic structure. As an illustration, first consider the case of a homoge-
neous target space N = G / H , where G is a Lie group and H is a discrete subgroup
ofG.

Then there exist Killing vector fields Yi spanning TpN at any point p C N and
(0.1) is equivalent to the system of equations

0 = <Du,y, ou) = ̂ {QaU.Yi ou} + {9aU,dYi{u) . (Tn)

for all i. Since Yi is Killing, the last term vanishes and we obtain the first order
Hodge system

-9a{QaU,YiOu) =0 (0.5)

for all i, equivalent to (0.1). This form of (0.1) immediately implies the following
weak compactness result. Suppose (^z/) is a sequence of wave maps such that
v^ —^ u in IP.Dv^ —7 Du weakly in L2, locally, as L -> oo. Then u again is a
(weak) wave map.

XVII-4



RECENT EXISTENCE AND REGULARITY RESULTS FOR WAVE MAPS 5

Coupling this observation with a suitable scheme for obtaining approximate so-
lutions to (0.1), Shatah [17] (for N = 5^), Yi Zhou [22] (for m = 2), and Freire [7]
(for the general case) then obtain the following result.

Theorem 0.3. Suppose N = G / H is homogeneous. Then for any (^0,^1) G H1 x
L^IR^TAQ there exists a global weak solution u of (0.1), (0.2) of class H1.

In the case of a general target manifold, the algebraic structure giving rise to a
Hodge system analogous to (0.5) was uncovered independently by Christodoulou-
Tahvildar-Zadeh [3] and Felein [12]. With no loss of generality (as shown by these
authors) we may assume that TN is parallelizable; that is, there exists a smooth
orthonormal frame field e i , . . . , ~e^ for TN. Given a (weak) wave map u: R x R"1 -)-
N , we then obtain a frame for the pull-back bundle u~lTN by letting

ei(z) = Rij(z)ej(u(z)) for z = (t,x) G R x R^1,
where

R=(Rij): RxR7 7 1 -^S0(k).
Denote 0i = (dn.e^) = O^dx0'^^ = {dei.ej) = ujij^dx01, 1 ̂  i,j <, k.

Then (0.1) is equivalent to the system of equations
0 = (D^e,) = ̂ {Q^a) + (^^ez)

= -Q^a + ̂  • 0^ =: 8^i + ̂  •„ 0j ^

for 1 ̂  i <^ k. Note that (0.6) is a first order Hodge system analogous to (0.5);
however, (0.6) differs from (0.5) by a quadratic expression.

Using the Hodge structure (0.6), in joint work with A. Freire and S. Miiller [8],
[9] we obtain weak compactness of wave maps in m = 2 space dimensions.

Theorem 0.4. Let m = 2. Suppose (t^) is a sequence of wave maps such that
u1' —> u in L2 and Dv^ —r Du weakly in L2, locally on R x R771, as L —^ oo. Then
u is a (weak) wave map.

The proof makes contact with the work of Evans [5] and Bethuel [1] on the
partial regularity of stationary harmonic maps. In particular, we also use special
compensation properties of Jacobians ([4]) and 1-L1 — BMO duality ([6]).

The crucial determinant structure for the nonlinear term in (0.6) is achieved by
localizing the equation to a compact domain which we then regard as contained in
the fundamental domain of a torus T3 = R^Z3.

On T3 (following Helein [12]) we then impose the Coulomb gauge condition (with
respect to the Euclidean background metric) by choosing, for each L, a "gauge"
R1- C H^T^'.SOW) such that

^^\Def\2dz=m^^\D{R^ o ^))|2 dz.

In this gauge, we have
Qa^ij.a = Oeucl^ij = 0,

and (ef) is bounded in H1-2^3) with

E / l^l2^ < E / 1̂  ° u^dz < CE^W) < C.i JQ i JQ
XVII-5
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Hence we may assume that e^ —r ei weakly in H112^3) and

6^ = (^.ef-) = 0^ dx^ -r 0, = (^,e,),
^ = {de^ej} = ̂  dx0 -r ̂  = {de^ e^}

weakly in L2 as L -> oo.
Using the Hodge ^-operator (with respect to 77), we may express

^..^^^^A^).

By Hodge decomposition (with respect to the Euclidean metric on T3), moreover,
we have

^ = daj + SeucibJ + cj,

where a1- —r aj.bj —r bj.cj -)• Cj in H1^3) as L -^ oo. The harmonic forms cj
are constant multiples of the basis vectors dx0' A dx^\ hence cj' -> Cj smoothly, as
L —)- oo, and uj^ ^ c1- —r ujij '^ Cj in T>'. Using the Coulomb gauge condition, and
letting (3J" = *6^, the second term may be re-written

^ A SenclbJ = Sencl(^^) dz,

which tends to the desired distributional limit. Similarly, for the third term we
have

c .̂ A daj = -d(uj^ A aj) + dw^ A aj.

Again, it is easy to pass to the limit L —> oo in the divergence term. The last term,
finally, possesses a determinent structure

^ A aj = de^ A dej A aj.

Using the Hardy space estimates for Jacobians of [4] and U1 - BMO duality of [6]
we are able to show that, as L -> oo,

de^ A dej A aj -7 dei A dej A dj -h v in D ' ,

and to characterize the defect measure v in a way analogous to P.L. Lions' [15]
concentration-compactness principle. In particular, from energy estimates we derive
that the H ^capacity of the support of v vanishes. But, passing to the limit L —^ oo
in (0.6), on the other hand we have

0 = 6^ + ̂  •„ 0J -r 6^, 4- uJij ^ Oj + v in P7;

that is,
v = -s^e, - ̂  ̂  0j e H-1 + L^r3),

and hence v = 0.
Finally, in joint work with S. Muller [16] we couple the above weak compactness

argument with the viscuous approximation method suggested by Yi Zhou [22] to
obtain

Theorem 0.5. Lei m = 2. Then for any (no^i) € H1 x L^R^TAO there exists
a global weak solution to the Cauchy problem (0.1), (0.2).

It remains to question whether this solution is unique and regular for smooth
data.
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