@incollection{JEDP_1997____A16_0, author = {G. Rozenblum and Michael Solomyak}, title = {CLR-estimate revisited : {Lieb's} approach with non path integrals}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {16}, pages = {1--10}, publisher = {\'Ecole polytechnique}, year = {1997}, zbl = {01808674}, mrnumber = {98m:47029}, language = {en}, url = {https://proceedings.centre-mersenne.org/item/JEDP_1997____A16_0/} }
TY - JOUR AU - G. Rozenblum AU - Michael Solomyak TI - CLR-estimate revisited : Lieb's approach with non path integrals JO - Journées équations aux dérivées partielles PY - 1997 SP - 1 EP - 10 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/item/JEDP_1997____A16_0/ LA - en ID - JEDP_1997____A16_0 ER -
%0 Journal Article %A G. Rozenblum %A Michael Solomyak %T CLR-estimate revisited : Lieb's approach with non path integrals %J Journées équations aux dérivées partielles %D 1997 %P 1-10 %I École polytechnique %U https://proceedings.centre-mersenne.org/item/JEDP_1997____A16_0/ %G en %F JEDP_1997____A16_0
G. Rozenblum; Michael Solomyak. CLR-estimate revisited : Lieb's approach with non path integrals. Journées équations aux dérivées partielles (1997), article no. 16, 10 p. https://proceedings.centre-mersenne.org/item/JEDP_1997____A16_0/
AHSim. Y. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883. | Zbl
Ca. R. Carmona, Path integrals for relativistic Schrödinger operators, Proc. Nordic Summer School in Math., Lecture Notes Physics 345 (1989), 66-92. | MR | Zbl
Co. J. Conlon, A new proof of the Cwickel-Lieb-Rozenbljum bound, Rocky Mountain J. Math. 15 (1985), 117-122. | MR | Zbl
Cw. M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math. 106 (1977), 93-100. | MR | Zbl
D. I. Daubechies, An uncertainity principle for fermions with generalized kinetic energy, Commun. Math. Phys. 90 (1983), 511-520. | MR | Zbl
LevS. D. Levin and M. Solomyak, Rozenblum-Lieb-Cwikel inequality for Markov generators, Jour. d'Anal. Math 71 (1997), 173-193. | MR | Zbl
LiY. P. Li and S-T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), 309-318. | MR | Zbl
L1. E.H. Lieb, Bounds on the eigenvalues of the Laplace and Schrödinger operators., Bull. of the AMS 82 (1976), 751-753. | MR | Zbl
L2. E.H. Lieb, Kinetic energy bounds and their application to the stability of matter, Proc. Nordic Summer School in Math. Lecture Notes Physics 354 (1989), 371-382. | MR | Zbl
MRoz. M. Melgaard and G. Rozenblum, Spectral estimates for magnetic operators, Mathematica Scandinavica (to appear). | Zbl
RSim. M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. 4, Academic Press, New York, San Francisco, London, 1978. | Zbl
Roz. G.V. Rozenblum (Rozenbljum), The distribution of the discrete spectrum for singular differential operators, Dokl. Akad. Nauk SSSR 202 (1972), 1012-1015 (Russian) ; English transl. in Soviet Math. Dokl 13 (1972). | Zbl
RozS. G.V. Rozenblum and M. Solomyak, CLR-estimate for the generators of positivity preserving and positively dominated semigroups, prepint ESI 447 (1997). | Zbl
Sh. M. Shubin, Discrete magnetic Laplacian, Commun. Math. Phys. 164 (1994), 157-172. | MR | Zbl
Sim. B. Simon, Functional Integration and Quantum Physics, Academic Press, NY, 1979. | MR | Zbl