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Local existence theory for the generalized Schrodinger equation

Gustavo Ponce

Department of Mathematics
University of California
Santa Barbara, CA 93106, USA

This note is based on a forthcoming joint work with Carlos E. Kenig and Luis
Vega.

We are interested in the local well posedness of the initial value problem (IVP)
for nonlinear Schrodinger equations of the form

9tU = iCu +P(u,V^^V^), t G R, x G R",

u(x,0) = no(x),
(1.1)

where u = u ( x , t ) is a complex valued function, C is a non-degenerate constant
coefficient, second order operator

(1.2) ^-E^-E^ for some fcc{l , . . ,n},
3<k j>k

and
p : c2^2 —, C.

is a polynomial of the form

(1.3) P(^) =P(^, . . ,^ ,+,)= ^ a^0, / o ^ 2 .
/o< a\<d

When a special form of the nonlinear term P is assumed, for example,

DQ^ . yP, are real for j = 1,... n,
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standard energy estimates provide the desired result, see [Kt]. In these particular

cases, the dispersive part of the equation, modeled by the operator C, does not
play any role in the proof, i.e. the same local result applies to the IVP

OfU = P(n,V^n,z7,V^),
u{x,0) = uo(x).

t G R, .T €

Another approach used to overcome the "loss of derivatives" introduced by the
nonlinear term, is restricted to work in suitable analytic function spaces, see [Hyl],

[SiTa]. For the semi-linear case P = P(u,u) see [Cz] and references therein.

In [KePoVel], we proved that (1.1) is locally well posed for "small" data, in the

Sobolev space -ZP^), for s large enough, when /o > 3 in (1.3), and in its
weighted version, if ^ == 2 in (1.3). This result applies to the general form of C
in (1.2).

To explain the method of proof in [KePoVel] as well as the restriction on the
size of the data, we consider integral eolation version of the IVP (1.1)

(1.4) u(t}=e^tcuo+ I e^(<-t/^P(^^,V,u,^^,V^)(^)^/,
Jo

and use the following estimates,

f (z ) sup||e^o||2=|ho||2
[0,T]

(1.5)
r-n

(u] \\\D112e^tcu^\\\T= sup( / / ^^e^u^dxdtYl2 <c\\u^
^ez" Jo JQ^

7. /^^-^^(^^llT^clHFII^
Jo

W |||V. / e
Jo

where {Q//}/(C^" ls a family of unit cubes of side one with disjoint interiors
covering R", and D = (-A)1/2 .

The local smoothing effect described in (i i) was proven by Constantin-Saut
[CoSa], Sjolin [Sj], and Vega [Ve].

The inhomogeneous version (iii) of this local effect was established in [KePoVel].
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For the problem considered here, it is essential that in the inhomogeneous case

one gains one derivative. This allows to use the contraction principle in (1.4).
However, the use of the ||| • ||| norm forces us to use the following norm

H G H / I (L-(Q^ X[0,T])) = Y. SUp SUp|G(^)|.
^ t€[0,T] Q^

This appears as factor which cannot be made small by taking T small, except

if G(t) is small at t = 0. It is here where the restriction on the size of the data
appears.

In the one dimensional case, n === 1, the smallness assumption on the size of the

data in was removed by N. Hayashi and T. Ozawa [HyOz]. They used a change of
variable to obtain an equivalent system with a nonlinear term independent of 9jcU^
which can be treated by the standard energy method.

In [Chl] H. Chihara, for the elliptic case C = A, removed the size restriction on

the data in any dimension. Using an invertible classical pseudo-differential operator
of order zero, JC, he changes variables, and rewrites the equation as a system in

terms of (Ku^ Ku)^ where the commutator [A"; z'A] basically allows to control the

terms in V^. A main step in his proof is a diagonalization method in which the
assumption on the ellipticity of C is essential.

Equations of the form described in (1.1) with C non-elliptic arise in several
situations, for example, in the study of water wave problems, the Davey-Stewartson
[DaSe], and Zakharov-Shulman [ZaSc] systems, in ferromagnetism, the Ishimori

system [Ic], and as higher dimension completely integrable models, see [AbHa].

For example, consider the Davey-Stewartson system

(1.6)
iQfU + CoO^U + O^U = C^U^U + C^llQ^^,

9^^ +^<9^ =<9,H2,
u(x,y,0) = uo(x,y),

where u = u ( x ^ y , t ) is a complex-valued function, y = y ( x , y , t ) is a real-valued
function, (when (c^, c^ , c^, cj = ( — 1 , 1 , — 2 , 1 ) or ( 1 , — 1 , 2 , — 1 ) the system in (1.1)

is known in inverse scattering as the DSI and DSII respectively).

In the ca,se, 03 < 0 where the equation in (1.6) is essentially not semi-linear,
several results has been established, see [GhSa], [Ch2], [Hy-Sa], [Hy2], [LiPo].
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However, in the particular case 0.3 < 0, CQ < 0, i.e. nonsemilinear and nonelliptic

dispersion, the only existence result available are for analytic data, see [Hy-Sa], or

^smalF data, see [LiPo] .

In the IVP for the Ishimori system can be written as

iQfU+Q^^u ~^9^u =^^(ii^^ -u2^} +^(^1^2 --(^z^J, b e R ,

n2 i ^2 -i ^x^ux^—ux^u^^9^y± 9^ = 4z-—^^pp--,

n(.r,:y,0) = uo(x,y).

For the' ( — , + ) case, see [So]. For the case ( + , — ) the only existence results
available are restricted to the class of analytic data, see [Hy-Sa].

Our main results are as follows:

Theorem A.
Let IQ > 3 ^ see ( 1 . 3 ) . Then there exists s = s(n\P} > 0 such that, for any

UQ G ^^(IR"), the IVP ( 1 . 1 ) has a unique solution u('), defined in the time interval

[0,T], T = T(\\UO\\H^ > 0, satzsfymg

(1.7) ^eC([0,T] :fi^s(Rn)),

and
m

(1.8) HIJ^^^IIlT- sup(/ / ^^^u^x^dxdt}1!2 < oc.
^ez" Jo Jq^

We remark that this result is new even in the elliptic since we do not need
weighted Sobolev spaces as in Chihara^s work.

Theorem B.
Let lo = 2 , see (1.3). Then there exist s == .s(n; P) > 0, and m == m(n; P) > 0,

such that. for any Uo (=. H^R") H L2^ : [x^dx), the results -in Theorem A hold

with

(1 .9) u € C([0,T] : H-nR") n Z^R" : H .̂r)).

To explain our method, let us consider a, particular case of the I.V.P. (1.1)

(1.10)
Qfu = iCu + u2 YJ]^ (9x, u + <9̂ . z/),

ii(x,0) = uo(x).
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Differentiating the equation above, and using the notation

Ua = 9^u^ \a\ < I , VQ = 9^u, \a\ = /,

with / G Z"1" to be fixed later, we obtain the system

r QfUa = iCu^ +Pc,((n/9,^)|^|</J^,^)|/3|=/), H </,

n(1.11)
9tVa = iCVc, + It2 ̂ {9^^U + Ox,v}+

J-l

+Pa((^/?^/?)|/?|</,(^,^)|,/?|=/), H = /,

where the P^s are polynomials in their variables.

Since the equations for (^/?)|/?|</ are semi-linear, they can be easily handled if

the equations for the v^s can be solved in ff^R^). Thus, the problem reduces to

considering the equations for t^s, which can be rewritten as

9

n n

QtVc, = iCVa + ̂  ^(^^a + Qx^a} + {u2 - U^) ̂ (<5;r^a + 9x,V^

(1.12) J=l 3=1

+Pa((^/?,^)[/?|<f,(^^/?)|/?|=/), IQ-I = I '

The nonlinear terms in (1.12) are either semilinear ones, whose bound depends
on the Z^-well posedness of the associated linear problem, or those involving
(V;r^/??V;r^/?)|/?|=/- These appear in a form such that if u ( ' ) is a solution of
(1.12) then they vanish at t = 0. Thus, in a small time interval [0,T], they must

remain ^small^. Hence, if the solution of the associated linear problem in (1.12),
satisfies local estimates similar to those for the generalized free Schrodinger group

{ettc}^_^ described in (1.5), then our previous argument provides the desired

result. :

Hence, the problem lias been reduced to show that, under appropriate assump-

tions on the smoothness and decay of the coefficients (b^j = (6^,1. • • ^ A - , / ? ) . ^ ==

1,2, j = l , . . . ,n, which depend only on the initial data), the IVP for the linear

Schrodinger equation with variable coefficient lower order terms

.„ f 9iv = iCv + 61 (x) . V,z- + h(x) • V^+P(^),
( 1 .10 ) \

I u(.r,0)=z>o,
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satisfies the following results.
To simplify the exposition we shall assume that the coefficients in (1.13) satisfy

bi, 62 € Co^R^ with \\b,\\LN,i + \\b^\\LN,i < K, N large.

Theorem C.
Under the above hypothesis^ there exists K == K(n) such that the IVP ( 1 . 1 3 )

has a unique solution u G (7((—oo, oo) : ̂ (R")) verifying that for any T > 0

(1.14) sup ||^)||2 < ̂ {IMb + IP'^IIIrL
-T<«7'

and

(1.15) Ill^^lllr 5. ̂ {KIb + IP-̂ IIIrL

where c depend only on n^K, and {J8/)^^) =< <^ >5 /(<^).

Basically Theorem C extends the estimates in (1.5) to solutions of the equation
in (1.13) a Schrodinger equation with first order variable coefficients.

The local solvability of the linear IVP (1.13) with C = A and b^{x} == 0

f 9fV = i/\v + 61 (x) • V^ + F(x, t},

\ v(x,0) = VQ.

have been considered in several works, [Dol], [Mi], and references therein.

In particular, Mizohata [Mi] proved that the following condition is necessary for
the L^vell posedness of (1.16)

^1.17) sup
.reJK^eS^-^AX) - /Jo

^ / bi(x + rcL1) • u:dr < 'x

We observe tliat when 6 i ( ' ) is real, the standard energy method provides the
desired result.

Also since in our case the coefficients &^., k = 1,2, depend on the initial data
no? condition (1.17) justifies the weighted hypothesis on the data in Theorem B for
P having quadratic terms involving (V^z/.V^). In the case /o > 3 in (1.3), the
condition (1.17) follows from the Sobolev theorem.
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Without decay assumptions on the coefficient 62? the regularity of the solution
of the IVP (1.13) may depend on the ellipticity of C. Thus the IVP

(1.18)
9tV == iCv 4- b^(x) • Vj-i;,

v(x^O) = VQ^

with &2 € ^(R"). In [KePoVel] we showed that in the case 77. = 2, C = <9^,,
and 62 = —^ the IVP (1.18) is well posed, and its solution satisfies

m

(1.19) IH^HIr = sup ( / / [J^^^)]2^^)1/2 < crINI
^ez" Jo ^0^^ez" Jo JQ^

^{x^dxdt^l2 <CT\\VQ\\L^

for 0 ^ 5 < 1/4. Morever, we proved that (1.19) fails for s > 1/4. However, we
showed that for C = A and 62 € C^R71) (1.19) holds with s == 1/2.

As it was mentioned above, once (1.6)(i)-(iii) are available, the proofs of Theo-
rems 1.1-1.2 reduce to the argument given in our previous works, see [KePoVel].
We look for an operator C such that C is invertible in Z/2, the difference be-
tween the commutator z^.C"] and Cb^(x) ' V can be bounded appropriately ,
and Cv = Cv. This. operator C is in the exotic symbol class 5^ o °f Calderon-
Vaillancourt. The use of C was suggested from a previous work of Takeuchi
([Tk]).

We may remark that the operator A for which the symbol of i[C^A}—Ab^(x}'\7
essentially vanishes is not a classical ^.d.o. It is in the class recently studied by
Craig-Kappeler-Strauss [CrKaST], which in the non-elliptic case has not been shown
to provide L2 bounded operators, see also [Do2], [KePoVe3].

Thus we reduce the problem to obtain the estimate in (1.14)-(L15) for solutions
of the linear IVP (1.13)

The main step in the proof of Theorem C is the construction of the operator
C ( x ^ D ) .

Construction of the operator C .

Let C = C{x^D) be a Z^-bounded 0.d.o. with symbol o-(C) = c{x^) to be
determined. Thus,
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7 T /»

—(C^,C'u)== — / CuCudx
cit at j^n

(L20) = (C?rM,Ct()+(C&iVu,Cu)+(C';)2W,Cn)

+ (CF, Cu} + {Cu, CzCu} + {Cu, Cb^u}

+{Cu,Cb^u}+{C'u,CF}.

Integration 1)y parts gives

{iCCu, Cu} + {Cu, zCCu) = 0.

Thus we can rewrite (1.20) as

-^{Cu, Cu} = 2^{i[CC - CC}u, Cu} + 2%(C'6iVz<, Cu}
(1.21)

+ 2%(G&2Vu, Cu} + m{CF, Cu}.

Consider the first two terms in the right hand side of (1.21). Using the notation

<7(a=- (^+ . .+^ )+(^+ i+ . .+^ ) , and ^ = (Ci,- ,^,-^fc+i, . . , -<^n),

it follows that

Af(o=9(om
so that

Moreover.

and

CCf(x)= t e"-^(.r^)g(a/(0^.
JR"

CCf{x}= I ^{^•^{x^f^d^
JIR"-

r,(^^c(.r^)) = qW^c(x^) + 2^ • V,c(.r,0e1"^ + e^C^x^).
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Assuming that ( C ^ c ( x , ^ ) ) is Z^-bounded we have

z[CC - CC] = -2(^ • V,c)(^ D) + ̂ i,

and

(T(C6i(^ . V,) = zc(x^)b,(x) ̂  + ̂ 2.

Our goal is to make i[CC — CC} + Cbi(x) ' V^ as "small" as possible. Thus, we
get the equation

(1.22)

Defining

it follows that

2$.V,c(^)=zc(a-,aM.y)^

(f>(x^} = log c(.T,a,

C.V^(a-^)=^i(a-).^.

Hence

i r ° ° ^ ^^,o=,/ ^^)-^'
We observe that

c(x, Q = exp((4>(x, ̂  + 6(x, -^)/2)

also solve (1.22).
It is not hard to see that

:1.23) ^^<-(,c,a ^c,,,,<r ^^
1 ^ 1

, |o|+ J| ^ A-

Thus, as it was mentioned above the symbol c ( , r , ^ ) is in the class studied by
Craig-Kappeler-Strauss. In the nonelliptic case £ is unknown whether or not it
provides a .L^-bonnded operator.

We need to truncate the symbol c(x^) in an appropriate manner. Let 0(^,)
be an even smooth function, 0(^) = 1, |^| ^ 2, and O(^) = 0, |^| ^ 1, and
^ 6 CO°(R), 0(.r) = 1, |.r| < 1/2, and (;'(.(•) = 0, |.r[ > 1. For R > 1 we define
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-^O^)^)^)-

The symbol CR is in the class S^o(M), i.e. CR G (^(R271) with

\9^9^CR{x^)\<K,

for all multi-indices o,/3 ^ At = Af(A r) , depending on our assumptions on the
data.

Next we need to verify that C p ( x ^ D ) satisfies the following properties.

(i) Its symbol is even in <^. This is essential to bound the term (Cb^u^Cu).
We use that C*G = Fi + T^, with Tj € S^o(M), j = 1,2, Y^ "smair, for R
large, and Y\(x^} real, and even in <^, thus T\u = T\u.

(ii) 2[cr - rq + cb,. v, = E^p + E^
where E^^R G 5'^o(A^)? and £"2,^ is an operator of ^order V which satisfies

r-n

(1.24) | / {E,^Cu}dt\ < ^ I I I ^ / ^ I I I ^ + A ' T sup ||̂ )|||,
Jo K \t\<T

(iii) for R ^ RQ = J?o(A,n), (7^ is invertible in L2, with inverse having norm
bounded by K.

The fact that £'2,/? is an operator of ^order V is due to the use of the class
CR C S^Q(M). However, the bound in (1.24) suffices since the factor K / R can be
made as small as we wish. This loss of one derivative is compensated by deducing
the inhomogeneous version of the local smoothing effect in solutions of (1.13).
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